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Human utterances demonstrate temporal patterning, also referred to as rhythm. While simple oromo-

tor behaviors (e.g., chewing) feature a salient periodical structure, conversational speech displays a

time-varying quasi-rhythmic pattern. Quantification of periodicity in speech is challenging. Unimodal

spectral approaches have highlighted rhythmic aspects of speech. However, speech is a complex mul-

timodal phenomenon that arises from the interplay of articulatory, respiratory, and vocal systems.

The present study addressed the question of whether a multimodal spectral approach, in the form of

coherence analysis between electromyographic (EMG) and acoustic signals, would allow one to char-

acterize rhythm in natural speech more efficiently than a unimodal analysis. The main experimental

task consisted of speech production at three speaking rates; a simple oromotor task served as control.

The EMG–acoustic coherence emerged as a sensitive means of tracking speech rhythm, whereas

spectral analysis of either EMG or acoustic amplitude envelope alone was less informative.

Coherence metrics seem to distinguish and highlight rhythmic structure in natural speech.
VC 2016 Author(s). All article content, except where otherwise noted, is licensed under a Creative
Commons Attribution 3.0 Unported License. [http://dx.doi.org/10.1121/1.4939496]
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I. INTRODUCTION

Natural speech is characterized by regularities in the

occurrence of its constituent elements. These temporal regu-

larities may also be referred to as speech rhythm. A salient

rhythmic structure can be observed in basic oromotor com-

municative gestures such as lip–smacking in primates

(Ghazanfar, 2013), as well as in rudimentary forms of

speech, such as babbling (Dolata et al., 2008) and syllable

repetition (Ruspantini et al., 2012). Despite its inherently

more complex structure, natural speech also displays rhyth-

mic components which are, however, harder to detect and

quantify. Rhythm is viewed as a key organizational principle

of speech and considered crucial for communication

(Cummins and Port, 1998; Kohler, 2009; Tilsen, 2009).

Speech rhythm enables language acquisition (e.g., Petitto

et al., 2001; Nazzi and Ramus, 2003), development of read-

ing skills (Flaugnacco et al., 2014; Woodruff et al., 2014),

dynamic coupling of speech production and speech percep-

tion (Martin, 1972; Smith, 1992), and predictions about sa-

lient future events that facilitate subsequent processing

(Cutler and Butterfield, 1992). The present study aims to

quantify the temporal regularities in spontaneous, natural

speech by examining the periodic structure of speech-related

physical signals.

The definition of speech rhythm adopted in the present

study is, hence, somewhat different from a predominant out-

look on speech rhythm which emphasizes linguistic and pho-

netic aspects of rhythm such as meter and prosody. A

conventional linguistic approach to speech rhythm divides

languages into different rhythmic categories (“time-stressed”

or “syllable-stressed”) according to timing patterns of

stressed syllables (Abercrombie, 1967). This premise of sim-

ple isochrony in speech has since been questioned (e.g.,

Cummins and Port, 1998; Ramus et al., 1999; Kohler, 2009).

Speech rhythm has subsequently been assessed through de-

scriptive measures examining the temporal relationships

between basic phonological units, using, for instance, speak-

ing rate variations (Dellwo and Wagner, 2003; Dellwo,

2008). Alternatively, approaches based on coupled oscilla-

tors (e.g., Barbosa, 2007; O’Dell and Nieminen, 2009;

Meireles and Gambarini, 2012) view speech rhythm as being

composed of two interdependent recurring elements, perio-

dicity and structure (Fraisse, 1974), or a syllabic and

syllable-stress oscillator, respectively (Barbosa, 2007). This

multiplicity and evolution in methods and approaches for

quantifying rhythm can be seen as a testimony to the fact

that speech, in general (Greenberg, 2006), and speech

rhythm, in particular (Kohler, 2009), is a multi-layered phe-

nomenon which can be studied from various viewpoints. The

present paper focuses on one quantitative aspect of speech

rhythm that considers periodic fluctuations in speech signals

associated with the production of words and syllables. Such

a mechanistic definition of speech rhythm may also be

understood in terms of the syllabic oscillator part of the

coupled oscillator model proposed by Barbosa (2007), and is

a description of rhythm that uses measurable speech-related

signals. Periodic components in a speech stream may be

characterized by spectral decomposition of speech signals

(Tilsen, 2008; Tilsen and Johnson, 2008), where periodicity

is identified as power maxima in acoustic amplitude enve-

lope spectra (e.g., Chandrasekaran et al., 2009).

Frequency-domain signal processing tools are being

increasingly employed to investigate the acoustic (Das et al.,a)Electronic mail: anna.alexandrou@aalto.fi
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2008; Tilsen and Johnson, 2008; Tilsen and Arvaniti, 2013)

and muscular (electromyographic, EMG) (e.g., Ruspantini

et al., 2012) aspects of speech signals and speech rhythm.

The acoustic envelope carries temporal features which

reflect rhythm in speech (Rosen, 1992). These are observed

on slow timescales and chiefly consist of low-frequency am-

plitude fluctuations of the acoustic envelope (Rosen, 1992).

In speech rhythm research, the acoustic signal has often been

investigated in the time domain (e.g., Ramus et al., 1999); in

particular, energy fluctuations in the acoustic amplitude en-

velope are suggestive of syllabic rhythm (Marcus, 1981;

Cummins and Port, 1998). When aiming to describe rhythm

in speech, the power spectrum of the amplitude envelope of

the acoustic signal seems more informative than time-

domain methods since the spectral estimate does not rely on

any pre-determined hypothesis about the rhythmic structure

of an utterance (Tilsen and Johnson, 2008). In addition to

acoustic signals, neuromuscular (i.e., EMG) signals are

highly relevant markers of speech rhythm: they indirectly

measure the synchronous firing of motor neurons and, hence,

are indicative of motor control and activation patterns of a

given muscle or muscle group. For instance, peri-oral EMG

(e.g., Wohlert and Hammen, 2000) is a reliable marker of

muscular activity associated with the movement of the artic-

ulators (e.g., lip and tongue). Frequency-domain analysis of

surface EMG signals has demonstrated a rhythmic pattern of

activation in articulatory muscles during speech-related tasks

(Smith et al., 1993; Ruspantini et al., 2012; Shepherd et al.,
2012). While EMG alone captures various important aspects

of speech production, articulatory muscle activity is invaria-

bly accompanied by respiratory and phonatory events from

the vocal tract and vocal chords. It could be, thus, suggested

that acoustic and EMG signals are interrelated in both time

and frequency domains, although each signal may also dif-

ferentially highlight (sub)segments of speech, such as conso-

nants or vowels (e.g., Gracco, 1988).

Frequency-domain analyses of acoustic and EMG sig-

nals thus have, each separately, proven their usefulness in

describing speech rhythm. However, it seems important to

consider these two signals jointly as they represent comple-

mentary parts of the process of natural, coherent speech

production. Speech is a complex signal originating from the

coordination of numerous effectors with varying intrinsic

timescales. Multiple processing levels involving the neuro-

muscular, articulatory, and respiratory systems come to

play in order to produce the resulting acoustic output

(Alfonso and Baer, 1982). Furthermore, the rhythmic char-

acteristics of the output are dynamic and vary with time,

thus making it difficult to accurately define and quantify

speech rhythm (O’Dell et al., 2007; Tilsen and Arvaniti,

2013). Because of this, it would seem unlikely that collect-

ing data from a single modality would be sufficient to fully

describe the temporal rhythmic features of the acoustic out-

put. In accordance with previous views (Cummins, 2009,

2012), it is thus proposed that reaching a global description

of speech rhythm would greatly benefit from adoption of a

multimodal and integrative perspective. Coherence analysis

between acoustic and EMG signals is a multimodal method

which provides a quantitative measure of the correlation of

these signals in the frequency domain. Coherence analysis

as a measure of synchrony between two signals (for

instance, EMG-EMG or EMG-cortical coherence) has valu-

able applications in both basic neurophysiological research

and clinical applications (for a review, see Grosse et al.,
2002).

In this study, a multimodal approach including coher-

ence analysis of EMG and acoustic signals is employed to

investigate rhythm in conversational speech. Acoustic and

EMG signals are collected during natural speech production

at different speaking rates. Speaking rate is a complex tem-

poral variable determined by both articulation time and

pause time (Grosjean and Deschamps, 1975). Habitual

speaking rates are behaviorally expressed as phonemic

(10–12 Hz), syllabic (4–5 Hz), and word (2–3 Hz) production

frequencies (Levelt, 1999; Poeppel et al., 2008). Speaking

rate displays remarkable flexibility: one may voluntarily

modulate the rate of an utterance so that it is faster or slower

than the habitual rate (Grosjean and Lane, 1976). In running

speech, linguistic units such as words and syllables recur in a

semi-regular fashion as a function of time. This quasi-

periodic recurrence of linguistic units results in a distinctive,

albeit time-varying, rhythmic pattern in speech signals

(Tilsen and Arvaniti, 2013). Speaking rate is viewed as a

global parameter that affects the entire command sequence

for an utterance. Modulations in speaking rate induce pho-

netic modifications which alter the temporal features of an

utterance and, therefore, its rhythmic structure (Smith et al.,
1995; Dellwo, 2008; Meireles and Barbosa, 2008).

Physically, these changes are reflected as shifts in the spec-

tral power distribution of speech-related signals (Kelso

et al., 1986; Smith et al., 2002). In the present experimental

design, speaking rate is employed as an independent variable

that serves to alter the power spectral distribution of the

measured signals in a controlled manner and, in the subse-

quent signal analysis, helps to determine the relevance and

adequacy of our multimodal approach in discerning rhyth-

mic patterns in speech. The natural speech production tasks

are complemented by a /pa/ syllable repetition task as a con-

trol (Ruspantini et al., 2012). Syllable repetition represents a

rudimentary form of speech (Davis and MacNeilage, 2002)

that offers a simple and clear-cut rhythmic motor task to

serve as a frame of reference when investigating the rhyth-

mic features of the more complex natural speech.

The present study addresses the question of an effective

means of measuring how rhythm is encoded in natural

speech. Given that speech production is inherently multimo-

dal, coherence analysis between EMG and acoustic signals

could reveal the shared, functionally most relevant frequen-

cies of operation of the human speech production apparatus.

A further key point of interest is whether these operational

frequencies correlate with behaviorally estimated production

frequencies of linguistic units such as words and syllables. If

proven efficient, a multimodal approach, such as the one pre-

sented here, could shed more light on the nature of speech

rhythm and contribute to a better understanding of the under-

lying mechanisms of the production of rhythmic linguistic

output.
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II. METHODS

A. Participants

Twenty healthy Finnish-speaking volunteers (11

females; 9 males; all right-handed; mean age 24.5 yr, range

19–35 yr) gave their informed consent to participate in the

study, as approved by the Aalto University Ethics

Committee.

B. Experimental design

The participants were asked to produce connected

speech prompted by questions (in Finnish) randomly derived

from six distinct thematic categories (own life, preferences,

people, culture/traditions, society/politics, general knowl-

edge; Table I). To avoid repetition and learning effects, each

thematic question was presented only once during the

experiment. When replying, the participants were asked to

speak casually, as if talking to a friend, at one of three rates:

natural/normal, slow, or fast. With regard to the slow rate,

they were asked to aim for 50% of their normal speaking

rate, by preferably increasing their articulation time rather

than their pause time. For the fast rate, they were instructed

to speak as fluently and continuously as possible at the high-

est speaking rate possible, however, without severely com-

promising the intelligibility or the correct articulation of the

produced speech.

A training phase preceded the actual experiment to help

the participants to outline and modify their speaking rate

range. The participants were presented with a speaking rate

continuum (modified from Tsao et al., 2006) that represented

the range schematically and in which 100% stood for the

spontaneous, natural speaking rate. The continuum consisted

of several anchoring points at 25%, 50%, 75%, 125%,

150%, and 200% of the normal speaking rate. Participants

were presented with a training set of thematic questions (dif-

ferent than those used in the actual experiment) to be

answered first at normal rate (i.e., at 100%), and then at a

faster (�150% of normal) or slower (50% of normal) rate

than normal speech, aided by the anchoring points.

Subsequently, in the actual experiment, speaking rate varia-

tions were carried out based on the subjective perception of

the participants; no external pacing device was used.

A single speech production block consisted of a spoken

thematic question (duration 3–9 s; mean 5.6 6 1.3 s) and a

40-s response period. A signal tone (50-ms, 1-kHz tone)

indicated the beginning of a block, and another signal tone

(50-ms, 75-Hz tone) signified the beginning and end of the

response period. All sounds were presented via panel loud-

speakers. The mean interval from the end of one response

period to the beginning of the next one was 9.1 s, composed

of a 2.5-s rest period between blocks, mean question dura-

tion 5.6 s and a 1-s delay before response onset.

As a control condition, we examined repeated produc-

tion of the syllable /pa/ (Ruspantini et al., 2012). All partici-

pants performed this task at their normal rate; additionally,

10 out of 20 subjects were randomly chosen as a control

group that performed /pa/ repetition at slow (50% of normal

repetition rate) and fast rates (close to maximal, �150% of

normal repetition rate). A /pa/ repetition block consisted of a

40-s /pa/ repetition period, with a tone signal (50-ms, 75-Hz

tone) indicating the beginning and end of the period.

TABLE I. Thematic questions used to elicit natural speech from the participants. Each column stands for one thematic category, each category consisting of

five questions.

Own Life Likings People Culture/Traditions Society/Politics

General

Knowledge

What are your

plans for this day

and/or the follow-

ing days?

What kinds of foods do

you like?

Describe a known

musician, singer,

or composer. Why

do you find her/

him interesting?

Describe what

happens during a

holiday at a cot-

tage in the Finnish

countryside.

What is the role of

the President of

Finland? Describe

the Finnish presi-

dential institution.

What do you

know about skiing

and

snowboarding?

What kind of hob-

bies do you have

or have had during

your life?

What kinds of vacation

trips do you like?

Describe a known

artist, writer, or

film director. Why

do you find her/

him interesting?

Describe a tradi-

tional Christmas

holiday.

Describe the polit-

ical parties of

Finland.

Describe what

happens during

the Olympic

games.

What is a typical

weekend like for

you?

What kinds of books or

movies do you like?

Which movie, lit-

erature, or comic

book character

would you like to

be and why?

Describe the tradi-

tional

Midsummer’s cel-

ebration in

Finland.

Talk about public

transport and pri-

vate car usage in

Finland.

Describe Africa’s

geography and

nature.

Talk about your

work or

education.

What kinds of animals do

you like?

Describe a top

athlete from the

present or the

past.

What kinds of tra-

ditions are associ-

ated with May 1st

celebration in

Finland?

How does the

Finnish school

system operate?

Talk about what

comes to mind

about poker and

gambling.

What is a typical

weekday like for

you?

What kinds of desserts do

you especially enjoy?

Describe the cur-

rent President of

Finland.

Describe what

happens during a

summer festival in

Finland.

What do you

know about gar-

bage and recy-

cling policies in

Finland?

What kinds of

buildings can be

seen in the center

of Helsinki (capi-

tal of Finland)?
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Repetition blocks were separated by 10 s of rest to approxi-

mate the timing of the speech conditions.

The order of the experimental conditions was random-

ized across participants. Prior to the first block of each con-

dition, participants were informed of the upcoming task

(speech production or /pa/ repetition) via visual input. There

were six blocks per experimental condition, thus, totaling

�4 min of data for each rate of speech production and /pa/

repetition. During the measurement, participants were

instructed to keep their gaze on a fixation point projected on

a screen that was placed in front of them, at a distance of

�1 m from their sitting position.

The data reported in the present study were collected as

part of a more extensive neuroimaging project in which mag-

netoencephalography was used to track brain dynamics in

the aim to characterize the correspondence between neural

patterns and behavior in natural language perception and

production. The neuroimaging data will be reported

separately.

C. Recordings

Acoustic signals were recorded using a portable audio re-

corder (FOSTEX FR-2LE, Tokyo, Japan) and sampled at

44.1 kHz. Surface EMG signals were registered with reusable

circular electrodes (conductive area diameter 0.4 mm), low-

pass filtered at 330 Hz, and sampled at 1.5 kHz. Two bipolar

EMG channels were used to record muscular activity from

the lower lip muscles (orbicularis oris), as well as muscular

activity associated with tongue and jaw movements (primarily

from genioglossus and mylohyoid muscles). Muscular activity

from lower lip muscles was measured by placing the pair of

electrodes directly under the left-hand side of the lower lip,

�1 cm from the midline. Muscular activity associated with

tongue and jaw muscles was recorded by placing the pair of

electrodes on the soft tissue directly beneath the jawline (left-

hand side), �2 cm from the midline. The exact location of the

electrodes was determined individually for each participant

via tactile inspection of the soft tissue beneath the jawline

during repetitive production of the /n/ consonant. For both

EMG channels, inter-electrode distance was 1.5 cm. Electrode

resistance remained below 10 kX.

D. Behavioral analysis

The raw acoustic signal was analyzed both through a be-

havioral pipeline [Fig. 1(A), left] and a signal analysis pipe-

line [Fig. 1(A), right].

The audio materials from all participants, comprising

both the speech production and /pa/ syllable repetition

conditions, were transmitted to a transcribing company

(Tutkimustie Oy, Tampere, Finland) for strict verbatim tran-

scription, in which the audio materials are transcribed with-

out being edited or modified. For speech audio materials, all

spoken words, including utterances, false starts, repetitions,

filler words, and slang were transcribed, including meaning-

ful pauses and usual sounds (such as laughter). Any other

kind of non-verbal communication was excluded. Syllable

repetition materials were transcribed using the same princi-

ples. Transcription was carried out manually (i.e., without the

aid of any voice-recognition system) using a transcription-

specific software to play back each audio file.

Subsequently, based on the transcription, syllable pro-

duction frequencies were calculated by syllabifying all tran-

scribed words. Word and syllable production frequencies or

the /pa/ syllable production frequency were calculated sepa-

rately for each 40-s speech production block. The mean val-

ues of the word and syllable production frequencies, or the

/pa/ syllable repetition frequency, for a given experimental

condition and participant were obtained by averaging the

values across the six blocks.

The individual mean word and syllable production

frequencies were used as a behavioral reference to interpret

FIG. 1. Analysis procedures. (A) Flow chart of behavioral (left) and spectral

(right) analysis of the acoustic signal. See Sec. II for a detailed description.

(B) Examples of raw data (top) and resulting amplitude envelopes (bottom)

of acoustic (left) and EMG (right) signals recorded from one participant dur-

ing normal-rate speech production. Normalized amplitude (in arbitrary units;

y axis) is plotted against time (in seconds; x axis). Each plot displays a 5-s

chunk of data taken from a 40-s speech production block. For this particular

block, mean word and syllable repetition frequencies were 2.66 Hz and

5.45 Hz, respectively.
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any peaks appearing in the acoustic and EMG amplitude

envelope spectra and EMG–acoustic coherence spectra of

individual subjects. Similarly, the grand average across-

participants behavioral word and syllable production fre-

quencies and mean /pa/ syllable repetition frequencies were

used as reference in order to interpret any peaks emerging in

the group-level acoustic and EMG amplitude envelope spec-

tra and EMG–acoustic coherence spectra.

Speaking rate varies within a speaking turn that is com-

prised of multiple utterances and even within the course of a

single utterance. Such variation can be described with statis-

tical dispersion measures of syllable and word production

frequencies which may help to interpret power and coher-

ence spectra. Here, the dispersion measure of choice was the

range of word and syllable production frequencies and /pa/

syllable repetition frequencies for each subject and each

speaking rate. The range was computed as the difference

between the minimum and maximum mean production and

repetition frequency observed across the six 40-s blocks per

speaking rate. To facilitate comparisons between speaking

rates, normalized mean ranges for a given linguistic unit

(word, syllable) and /pa/ syllable at a given speaking rate

were obtained by dividing the mean range by the mean pro-

duction or repetition frequency.

E. Statistical analysis

All variables were first tested for normality of distribu-

tion using a Shapiro–Wilk test of normality. The effect of

speaking rate on mean word and syllable production fre-

quencies and ranges (20 participants) was tested using a one-

way within-subjects analysis of variance (ANOVA). The

same ANOVA design was used to evaluate the effect of rep-

etition rate on mean /pa/ repetition frequencies and ranges

(ten participants), as well as to compare within-participant

variation for speech and /pa/ syllable repetition at a given

rate (ten participants). Post hoc pairwise comparisons were

Bonferroni corrected.

The effect of speaking rate on the variance of word and

syllable production frequencies (20 participants) or /pa/

repetition frequencies (10 participants) was tested using a

likelihood-ratio (LR) test of equality of variances for paired

samples. This test evaluates differences between two nor-

mally distributed variances by extracting two separate

restricted log-likelihood values for each variable. The dif-

ference of these two log-likelihood values was computed

and referred to as a chi-squared distribution.

F. Spectral analysis of acoustic and EMG signals

As summarized in Fig. 1(A) (right), the raw acoustic

signal [example in Fig. 1(B), top left] was first bandpass fil-

tered (fourth order Butterworth filter) at 80–2500 Hz to

emphasize the voiced signal portions which are relevant for

speech rhythm analysis (Hertrich et al., 2013). Subsequently,

the amplitude envelope of the bandpassed signal was

extracted by full-wave rectifying the signal and low-pass fil-

tering (fourth order Butterworth filter) at 10 Hz (Tilsen and

Arvaniti, 2013). The amplitude envelope was then normal-

ized by subtracting the mean and rescaling the envelope by

its maximum absolute value, resulting in values between

1 and �1 [example in Fig. 1(B), bottom left]. The spectrum

of the downsampled (by a factor of 10), Tukey-windowed

(r¼ 0.2), and zero-padded envelope was calculated by taking

the squared magnitude of the fast Fourier transform using an

8192-point window. Finally, a moving average operation

was applied to the resulting spectrum in order to smooth out

random spectral peaks and thus facilitate interpretation of

the spectrum (Tilsen and Arvaniti, 2013).

The raw EMG signal [example in Fig. 1(B), top right]

was first high-pass filtered at 15 Hz to remove motion arti-

facts (Van Boxtel, 2001). Subsequently, the EMG amplitude

envelope [example in Fig. 1(B), bottom right] was extracted

by full-wave rectification of the signal. EMG envelope spec-

trum was calculated using Welch’s spectral estimator with a

Hanning window (8192 points) at 75% overlap (Ruspantini

et al., 2012).

Group-level acoustic and EMG amplitude envelope

spectra for both speech production and /pa/ syllable repeti-

tion at all three speaking rates were computed by first divid-

ing the amplitude envelope spectrum of each individual

participant by its mean value and then summing these nor-

malized spectra across participants.

G. Coherence analysis

EMG–acoustic coherence was computed to determine

possible common periodic features in the EMG and acoustic

signals. Coherence quantifies the relationship between two

time-series in the frequency domain. The coherence spec-

trum was obtained by first computing the cross spectrum of

the amplitude envelopes of the two signals and subsequently

dividing it by the power spectra of the amplitude envelopes

of both signals (fast Fourier transform, Hanning 4096-point

window). Group-level EMG–acoustic coherence spectra for

both speech production and /pa/ syllable repetition at all

three speaking rates were computed by first dividing each

individual-participant coherence spectrum by its mean value

and then summing these normalized spectra across

participants.

III. RESULTS

A. Behavioral analysis of speech rate

Word and syllable production frequencies [Fig. 2(A);

Table II] differed significantly between all speaking rates:

the rate increased from slow through normal to fast rate

[word: F(2,3.23)¼ 237.32, P< 0.0005; syllable: F(2,3.23)

¼ 281.40, P< 0.0005; post hoc pairwise tests word and syl-

lable, slow < normal and normal < fast, P< 0.0005]. The

same increasing rate pattern was evident for /pa/ repetition

[F(2,0.67)¼ 41.47, P< 0.0005; post hoc pairwise tests, slow

< normal and normal < fast, P< 0.0005].

Between-participant variation [schematically illustrated

by the box length in Fig. 2(A)] was smallest for slow-rate

speech for both words and syllables [word: slow vs normal

v2 (13.38,1), P< 0.0001; slow vs fast v2 (8.85,1), P< 0.005;

syllable: slow vs normal v2 (2.886,1), P< 0.05]. For /pa/

repetition, variation increased systematically with speech
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rate: slow < normal < fast [slow vs normal v2 (13.67,1),

P< 0.0005; slow vs fast v2 (54.95,1), P< 10–8; normal vs

fast v2 (2.81,1), P< 0.05].

Within-participant variation, that is, the normalized fre-

quency range of words and syllables [Fig. 2(B); Table III]

was larger at the slow rate than at normal or fast rates for

speech conditions [word: F(2,38)¼ 7.9, P< 0.001; syllable:

F(2,38)¼ 13.5, P< 0.0005; post hoc pairwise tests, word:

slow> fast, P< 0.05; slow > normal approaching signifi-

cance P¼ 0.07; post hoc pairwise tests, syllable: slow > nor-

mal, P< 0.01; slow > fast, P< 0.0005]. For /pa/ repetition,

range values did not differ significantly between the different

rates [F(2,18)¼ 1.1; P¼ 0.35]. When comparing speech and

/pa/ syllable repetition (n¼ 10; only participants that per-

formed both tasks at all three rates), within-participant varia-

tion was smaller for /pa/ repetition than for speech at slow

[F(2,0.63)¼ 7.59, P< 0.005; post hoc pairwise tests, word

> /pa/, P< 0.05; syllable > /pa/, P< 0.05] and normal rates

[F(2, 0.18)¼ 3.41, P< 0.05; post hoc pairwise tests, word

> /pa/, P< 0.05].

B. Spectral analysis of speech rhythm

1. Power spectra

For natural speech [Fig. 3(A)], the group-level acoustic

and EMG power spectra (lip and tongue) were characterized

by a rather flat pattern with no discernible power maxima

(beyond the lowest-frequency 1/f power increase) at any of

the three speaking rates. The pattern was the same for the

individual acoustic (Fig. 4) and EMG (Fig. 5) power spectra,

with no salient local maxima.

In contrast, /pa/ syllable repetition [Fig. 3(B)] revealed

salient group-level acoustic and EMG power maxima at all

three rates. Furthermore, both the acoustic and EMG (lip and

tongue) spectra displayed fairly similar power distribution

patterns and local maxima.

2. Coherence spectra

Group-level EMG–acoustic coherence spectra (Fig. 6)

demonstrated salient peaks. Contrary to the case of power

spectra, local maxima were evident for both speech [Fig. 6(A])

and /pa/ conditions [Fig. 6(B)]. For /pa/ repetition, coherence

of the acoustic signal with either tongue or lip EMG channels

displayed a quasi-identical spectrum. For speech, however, the

coherence peaks for the acoustic signal with either tongue or

lip EMG were slightly apart (�1 Hz difference). The coher-

ence peaks approximately aligned with the mean behavioral

frequencies [see Fig. 2(A); Table II] for both speech and /pa/

syllable repetition.

A correspondence between behavioral frequencies and

coherence maxima was also evident at the individual level

for both speech production (Fig. 7) and, most strikingly, for

/pa/ syllable repetition (Fig. 8).

IV. DISCUSSION

The main finding of the present study was that the tempo-

ral regularities in speech are remarkably well captured using a

multimodal spectral approach. Specifically, EMG–acoustic

coherence emerged as a more informative measure than

FIG. 2. Behavioral frequencies for words (top; n¼ 20), syllables (middle;

n¼ 20), and /pa/ syllable (bottom; n¼ 10). (A) Distribution of mean produc-

tion frequencies and (B) distribution of mean normalized range of produc-

tion frequencies. Each subplot displays the three production/repetition rates

(slow “s,” normal “n,” fast “f”). The whiskers (horizontal line) represent the

maximum and minimum data points within 1.5 of the interquartile range.

Interquartile range (third quadrant - first quadrant) is shown by the length of

the box. The vertical line within the box represents the median. Outliers are

marked by a cross.

TABLE II. Word and syllable production frequencies (n¼ 20; mean

6 standard deviation) and /pa/ syllable production frequencies (n¼ 10) at

three production rates. For slow and fast rates, frequencies as percentages of

normal are given in brackets.

Word Syllable /pa/

Slow 0.86 6 0.19 Hz

(40%)

2.08 6 0.5 Hz

(44%)

0. 87 6 0.27 Hz

(47%)

Normal 2.17 6 0.46 Hz 4.82 6 0.81 Hz 1.83 6 0.82 Hz

Fast 2.84 6 0.39 Hz

(136%)

6.26 6 0.65 Hz

(123%)

4.11 6 1.36 Hz

(225%)

TABLE III. Normalized word and syllable production range (n¼ 20; mean

6 standard deviation) and /pa/ syllable repetition range (n¼ 10) at three

production rates.

Word production

rate range

Syllable production

rate range

/pa/ syllable

repetition range

Slow 0.36 6 0.20 0.39 6 0.23 0.13 6 0.06

Normal 0.25 6 0.08 0.21 6 0.12 0.13 6 0.08

Fast 0.21 6 0.07 0.15 6 0.06 0.20 6 0.18
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spectral analysis of either EMG or acoustic amplitude enve-

lopes alone. Coherence spectral peaks reflected behavioral

frequencies, whereas no such peaks were observed in the

EMG or acoustic amplitude envelope spectra.

The combined frequency-domain analysis of EMG and

acoustic signals, in form of coherence, was here shown to suc-

cessfully highlight behaviorally relevant temporal patterning in

speech. Although both signals reflect articulatory processes—

EMG as a measure of muscle activity and acoustic signal as a

marker of the vocal respiratory function—they are very differ-

ent in nature and origin and contain other features not neces-

sarily directly related to articulation, including various kinds of

noise [such as pink noise with a characteristic 1/f trend (Voss

and Clarke, 1975)]. Coherence analysis helps to suppress ran-

dom, uncorrelated activity in the signals and accentuate any

shared oscillatory patterning. The present findings regarding

EMG–acoustic coherence are consistent with the global frame-

work of speech rhythm and oscillatory cycles as an organizing

principle of speech and as such are linked, on a general level,

to prominent theories in speech-acoustic research (Cummins

and Port, 1998; MacNeilage, 1998; O’Dell and Nieminen,

2009; Tilsen, 2009). More specifically, the signal-processing

methods presented in this paper are able to directly distinguish

the oscillatory components in naturalistic speech signals asso-

ciated with word and syllable production frequencies

(Chandrasekaran et al., 2009; Tilsen and Johnson, 2008).

Furthermore, EMG–acoustic coherence may be linked to the

notion of articulatory gesture as defined in the theory of articu-

latory phonology (Browman and Goldstein, 2000). According

to this theory, events taking place during speech production

FIG. 4. Relationship of group-level and individual acoustic power spectra

(speech) with mean and individual behavioral syllable production frequen-

cies at the three speaking rates: slow (top), normal (middle), and fast (bot-

tom). For each rate, the upper panel displays the group-level spectrum:

normalized power (in arbitrary units; y axis) is plotted against frequency (in

Hz; x axis), with the mean syllable production frequency indicated with an

arrowhead. The lower panel compiles the power spectral distribution for the

individual participants (rows), with power peaks indicated by a lighter shade

of gray. The participants are ordered by their individual syllable production

frequencies (circles).

FIG. 3. Group-level amplitude envelope spectra of the acoustic (top), tongue

EMG (middle), and lip EMG (bottom) signals. (A) Speech production and

(B) /pa/ syllable repetition. Normalized power (in arbitrary units; y axis) is

plotted against frequency (in Hz; x axis). Each plot displays data from three

production/repetition rates: slow (dashed line), normal (solid line), and fast

(dotted line). The x axis has the same scale (0–8 Hz) as for the behavioral

data displayed in Fig. 1(A). Normalized power was computed using differ-

ent normalizing factors for speech production and /pa/ syllable repetition;

consequently, the resulting group-level amplitude envelope spectra are not

directly numerically comparable between these two conditions. All visual-

izations of these results have been scaled so that the y axis has a minimum

value of 0 and a maximum value of 1.
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may be modeled by domain-general task dynamics (Saltzman

and Kelso, 1987). Task dynamics in speech consist of target

vocal tract configurations requiring specific action from certain

articulators (e.g., lip opening). Natural speech production and

syllable repetition, paradigms used in the present study, consist

of dynamic spatiotemporal events involving successive ges-

tures. Acoustic output follows a given articulatory movement

after a certain fixed amount of time (Schaeffler et al., 2014).

Thus, coherence seems like an appropriate measure for sin-

gling out the parts of the EMG and acoustic signals that are

most directly linked with articulatory dynamics.

Coherence analysis may be further extended to include

kinematic data, which may be combined with existing evi-

dence of time-domain correlations of articulator velocities

(Gracco, 1988) and articulator apertures (Chandrasekaran

et al., 2009) with EMG and acoustic signals. Kinematic data

would also allow the examination of how dynamic coupling of

articulatory gestural kinematics with linguistic units, such as

words and syllables (Tilsen, 2009), is manifested in the fre-

quency domain. Other uses of coherence analysis in speech

research involve the quantification of the functional coupling

(EMG-EMG coherence) between perioral and mandibular

muscles involved in articulation, enabling the investigation of

motor control patterns during speech production in both adults

(e.g., Moore et al., 1998) and children (e.g., Moore and Ruark,

1996). Furthermore, coherence analysis has been used to

reveal functional links between the motor cortex and EMG or

kinematic signals in rhythmic tasks (e.g., Jerbi et al., 2007;

Piitulainen et al., 2013), including a rudimentary language pro-

duction task (e.g., Ruspantini et al., 2012).

In the present study, salient EMG–acoustic coherence

spectral peaks were found in both speech and /pa/ repetition

tasks, suggesting an operational synergy that does not depend

on the degree of linguistic complexity. The frequency of the

coherence peaks largely aligned with the behaviorally esti-

mated production frequencies, both at group-level and in indi-

vidual participants. The coherence peaks reflect an aspect of

speech rhythm closely associated with oscillatory properties of

speech-related signals, as opposed to approaches focusing on

linguistic aspects of rhythm, such as stress patterns. For /pa/

syllable repetition, use of either lip or tongue EMG resulted in

a very similar coherence spectrum. For speech, however, the

local maximum of the EMG–acoustic coherence spectrum

occurred at a slightly lower frequency for tongue than lip

muscles. This suggests that for a simple oromotor task,

muscles of the jaw area and lip muscles are tightly coordi-

nated, whereas speech production relies on a different mode of

operation, with some degree of desynchronization between the

articulators (Smith, 1992). Hence, it may be concluded that

FIG. 5. Relationship of group-level and individual EMG power spectra

(speech) (left, tongue; right, lip) with mean and individual behavioral sylla-

ble production frequencies, at the three speaking rates: slow (top), normal

(middle), and fast (bottom). For each rate, the upper panel displays the

group-level spectrum: normalized power (in arbitrary units; y axis) is plotted

against frequency (in Hz; x axis), with the mean syllable production fre-

quency indicated with an arrowhead. The lower panel compiles the power

spectral distribution for the individual participants (rows), with power peaks

indicated by a lighter shade of gray. The participants are ordered by their

individual syllable production frequencies (circles).

FIG. 6. Group-level EMG–acoustic coherence spectra (top, tongue; bottom,

lip) for speech production (left) and /pa/ syllable repetition (right).

Normalized coherence (in arbitrary units; y axis) is plotted against frequency

(in Hz; x axis). The x axis has the same scale (0–8 Hz) as for the behavioral

data [Fig. 1(A)] and power spectra [Figs. 2(A) and 2(B)]. Each plot displays

data from the three production/repetition rates: slow (dashed line), normal

(solid line), and fast (dotted line). Normalized coherence was computed

using different normalizing factors for speech production and /pa/ syllable

repetition; consequently, the resulting group-level amplitude envelope spec-

tra are not directly numerically comparable between these two conditions.

All visualizations of these results have been scaled so that the y axis has a

minimum value of 0 and a maximum value of 1.
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EMG–acoustic coherence not only highlights periodic compo-

nents in speech but can also provide insights into the role of

various articulators.

Previous studies have used extensive speech corpora to

show that the production frequencies of linguistic units and,

hence, the periodicity of the speech signal could be mapped

as peaks in the acoustic amplitude envelope power spectra

(Das et al., 2008; Tilsen and Johnson 2008; Chandrasekaran

et al., 2009; Tilsen and Arvaniti, 2013). However, even for

larger data sets, 1/f trend removal has been deemed neces-

sary for saliently distinguishing spectral peaks related to

speech rhythm (Chandrasekaran et al., 2009; see also

Ruspantini et al., 2012). In the present study, EMG and

acoustic spectra as such were not particularly informative for

assessing periodicity in speech production, although salient

peaks in power spectra were observed for the more rudimen-

tary /pa/ syllable production. One likely reason is the rela-

tively concise data set (speech material from 20 participants,

4 minutes of data per speaking rate per participant). The

rhythmic pattern of speech is characterized by inherent irreg-

ularities; these irregularities tend to become amplified with

lesser amounts of data. In the present study, irregularities in

rhythm are manifested as notable intra-individual variations

(within-subject variation) in word and syllable production

frequencies. According to the coupled oscillator model, the

lack of a continuous periodic patterning in the speech signal

may be theoretically represented by the introduction of

uncertainty (O’Dell et al., 2007). In contrast, /pa/ syllable

repetition, a simple rhythmic task, was shown to feature

much less variation compared with speech, especially for

slow and normal rates. Indeed, such a simple oromotor task

displays a nearly perfect oscillatory pattern with little varia-

tion in frequency (O’Dell and Nieminen, 2009). Importantly,

EMG–acoustic coherence analysis succeeded in extracting

salient spectral peaks even in the more irregular natural

speech and for this relatively concise experimental data set.

The high behavioral relevance of the resulting spectral peaks

is emphasized by their alignment with the behavioral sylla-

ble/word production frequencies as a function of speaking

rate.

EMG–acoustic coherence analysis could be especially

beneficial in a clinical context, where the amount of data

FIG. 7. Relationship of group-level and individual EMG–acoustic coherence

spectra for speech production (left, tongue; right, lip) with mean and individ-

ual behavioral syllable production frequencies, at the three speaking rates:

slow (top), normal (middle), and fast (bottom). For each rate, the upper panel

displays the group-level coherence spectrum: normalized coherence (in arbi-

trary units; y axis) is plotted against frequency (in Hz; x axis), with the mean

syllable production frequency indicated with an arrowhead. The lower panel

compiles the power spectral distribution for the individual participants (rows),

with coherence peaks indicated by a lighter shade of gray. The participants

are ordered by their individual syllable production frequencies (circles).

FIG. 8. Relationship of group-level and individual EMG–acoustic coherence

spectra for /pa/ syllable repetition (left, tongue; right, lip) with mean and

individual behavioral /pa/ syllable production frequencies, at the three repe-

tition rates: slow (top), normal (middle), and fast (bottom). For each rate,

the upper panel displays the group-level coherence spectrum: normalized

coherence x (in arbitrary units; y axis) is plotted against frequency (in Hz; x
axis), with the mean syllable production frequency indicated with an arrow-

head. The lower panel compiles the power spectral distribution for the indi-

vidual participants (rows), with coherence peaks indicated by a lighter shade

of gray. The participants are ordered by their individual /pa/ syllable produc-

tion frequencies (circles).
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tends to be limited. Specifically, several disorders of speech

and language, including aphasia (e.g., Hadar et al., 1998;

Patel, 2005), Parkinson’s disease (Fox et al., 1996; Giraud

et al., 2008; Lu et al., 2010), and stuttering (e.g., Alm,

2004), involve impairments of speech rhythm. Although the

etiology of these pathologies is quite diverse, dysfunctions

of rhythm-generating structures in the brain, such as the ba-

sal ganglia, seem to be a common causal factor (e.g.,

Brunner et al., 1982). Hence, it may be suggested that a

description of pathological manifestations of speech rhythm

in patient groups could possibly advance the understanding

of the underlying causes and, consequently, contribute to the

development of appropriate treatments for a given pathol-

ogy. EMG–acoustic coherence could be introduced as an ef-

ficient tool for such purposes.

Speaking rate as an integral part of speech rhythm is a

multifaceted variable. There is considerable intra-individual

variation in speaking rate, manifested as changes in the pro-

duction frequency and duration of linguistic units (Janse,

2004), due to a variety of both linguistic and extra-lingustic

factors, such as gender, neuromuscular constraints, and pres-

ence of noise in the environment and language (e.g., Byrd,

1992; Tsao et al., 1997; Jacewicz et al., 2009). The present

findings link speaking rate to variation in behavioral fre-

quencies and, thus, in temporal structure of speech. The

observed mean word (�2 Hz) and syllable (�5 Hz) produc-

tion frequencies at normal rate fall within the range previ-

ously reported in the literature for a variety of languages

(e.g., Levelt, 1999; Poeppel et al., 2008; Ruspantini et al.,
2012). Similar to speech, mean /pa/ syllable repetition fre-

quency at normal rate (�2 Hz) is also consistent with previ-

ous reports (Ruspantini et al., 2012). However, languages

have different rhythmic properties (e.g., Ramus and Mehler,

1999). As an example, habitual speaking rates demonstrate

language-specific variations (Dellwo, 2008), with lower syl-

labic frequencies in Spanish, German, and English than

Italian (Clopper and Smiljanic, 2011; Tilsen and Arvaniti,

2013). These differences would potentially be reflected as

spectral shifts in coherence peaks relative to our present find-

ings for Finnish.

Despite these cross-linguistic variations, the syllabic rate

of �5 Hz is regarded as an important structural element in

terms of binding and integration in speech across languages

(MacNeilage, 1998; Giraud and Poeppel, 2012) and plays a

central role in coupled oscillator models of speech rhythm

(e.g., O’Dell and Nieminen, 2009; Tilsen, 2009). Intriguingly,

the preference for certain frequencies does not seem to be con-

fined solely to speech-related tasks, but rather appears to be a

cross-modal phenomenon encompassing multiple human

motor behaviors, such as finger-tapping and walking

(MacDougall and Moore, 2005; Jerbi et al., 2007). The appa-

rent preference for a specific rhythm may be a domain-general

phenomenon related to both optimized neural processing and

mechanical efficiency of task performance (Lindblom, 1983;

Sparrow, 1983; Tsao et al., 1997). Furthermore, such behav-

ioral motor rhythms seem to find counterparts in the neural dy-

namics of the motor cortex (Jerbi et al., 2007; Ruspantini

et al., 2012), as well as the basal ganglia and the cerebellum

(Buhusi and Meck, 2005).

Speaking rate variations were duly carried out by the

participants; this observation was consistent with previous

reports of on-demand speaking rate modulations (e.g., Tsao

et al., 2006). However, for all three speaking rates, between-

participant variation was small. This suggests that within a

certain speech production tempo, the speaking rates of dif-

ferent individuals were rather similar. In contrast, /pa/ sylla-

ble repetition rates varied considerably between individuals

for all three speaking rates. It may be suggested that speech

is an over-learned, albeit complex, construct (Smith, 1992),

unlike the rather more artificial /pa/ syllable repetition.

Hence, it may be proposed that speech features a relatively

tight control of all its constituent parameters, ensuring that

there is little variation between individual speech production

frequencies. An alignment of normal speaking rates across

individuals may importantly serve a communicative purpose

by ensuring optimal coupling between interlocutors.

The present findings contribute to the recently initiated

cross-disciplinary discussion on the definition of rhythm that

seeks to bring together the fields of neurophysiology and

behavior (Smith et al., 2014). A description of speech

rhythm, such as the one provided here, would afford valua-

ble information when considering the functional role of

rhythm in speech comprehension. The existence of a hier-

archical, rhythmic internal structure in speech has been

advanced as the key element in initiating the process of

transformation of an incoming physical signal into compre-

hensible lexical units (Poeppel et al., 2008). In line with the

notion that speech production and speech perception are

functionally intertwined (e.g., Pulverm€uller and Fadiga,

2010; Giraud and Poeppel, 2012), speech rhythm has been

suggested to serve as the “bridging” element between these

two processes. Furthermore, correspondence of the syllabic

rate (�5 Hz) with the timescales of spontaneous oscillatory

activity in cortical neuron populations has led to a view that

the existence of temporal regularities in both speech and

cortical signals is paramount for successful cortical process-

ing of spoken language (for a review, see Peelle and Davis,

2012). A number of studies from both a behavioral

(Drullman et al., 1994a,b; Shannon et al., 1995; Smith et al.,
2002) and a neurophysiological perspective (e.g., Ghitza and

Greenberg, 2009; Peelle and Davis, 2012) have provided

additional evidence that speech rhythm, in addition to spec-

tral detail, contains crucial information employed by the lis-

tener to extract meaning from an utterance. For instance, a

disruption of acoustic cues corresponding to the syllabic rate

(�5 Hz) has proven detrimental to comprehension (e.g.,

Drullman et al., 1994a; Shannon et al., 1995).

V. CONCLUSIONS

The present findings demonstrate that coherence analy-

sis, a spectral analysis tool linking different measurement

modalities, is far more informative than a unimodal spectral

approach in quantifying periodicity of speech signals. Local

maxima in EMG–acoustic coherence spectra signify the ex-

istence of functional synergy between articulatory systems

and phonatory systems, and the frequency of maximum co-

herence aligns with speaking rate. Future studies on natural
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speech production could utilize these same approaches to

examine the relationship between recordings from oral artic-

ulatory systems and phonatory systems, as well as from

motor cortical areas.
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