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Abstract Over the past decade, various techniques have

been proposed for localization of cerebral sources of oscilla-

tory activity on the basis of magnetoencephalography (MEG)

or electroencephalography recordings. Beamformers in the

frequency domain, in particular, have proved useful in this

endeavor. However, the localization accuracy and efficacy of

such spatial filters can be markedly limited by bias from

correlation between cerebral sources and short duration of

source activity, both essential issues in the localization of

brain data. Here, we evaluate a method for frequency-domain

localization of oscillatory neural activity based on the rele-

vance vector machine (RVM). RVM is a Bayesian algorithm

for learning sparse models from possibly overcomplete data

sets. The performance of our frequency-domain RVM method

(fdRVM) was compared with that of dynamic imaging of

coherent sources (DICS), a frequency-domain spatial filter

that employs a minimum variance adaptive beamformer

(MVAB) approach. The methods were tested both on simu-

lated and real data. Two types of simulated MEG data sets

were generated, one with continuous source activity and the

other with transiently active sources. The real data sets were

from slow finger movements and resting state. Results from

simulations show comparable performance for DICS and

fdRVM at high signal-to-noise ratios and low correlation. At

low SNR or in conditions of high correlation between sources,

fdRVM performs markedly better. fdRVM was successful on

real data as well, indicating salient focal activations in the

sensorimotor area. The resulting high spatial resolution of

fdRVM and its sensitivity to low-SNR transient signals could

be particularly beneficial when mapping event-related chan-

ges of oscillatory activity.

Keywords RVM � Beamformer �
Magnetoencephalography � MEG inverse problem �
Cortical rhythms � Source localization � Bayesian

approaches

Abbreviations

RVM Relevance vector machine

fdRVM Frequency-domain RVM

MEG Magnetoencephalography

EEG Electroencephalography

DICS Dynamic imaging of coherent sources

ECD Equivalent current dipole

CSD Cross-spectral density

MNE Minimum-norm estimate

MCE Minimum-current estimate

MVAB Minimum variance adaptive beamformer

FWHM Full width at half maximum

SNR Signal-to-noise ratio

BEM Boundary element method

EM Expectation-maximization

Introduction

Magnetoencephalography (MEG) and electroencephalog-

raphy (EEG) allow detection and tracking of cortical
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oscillatory activity. Its modulation by stimuli and tasks

(Hari and Salmelin 1997; Pfurtscheller and Lopes da Silva

1999) suggests that rhythmic activity has an important role

in brain function. However, reliable localization of the

brain areas that generate discernible oscillatory power in

MEG/EEG is not a trivial task (Belardinelli et al. 2012).

The solution of the so-called inverse problem, i.e., trans-

forming from the sensor (or electrode) level to the neural

sources, has been estimated in several ways. A conceptu-

ally simple approach is to model an active cortical patch as

an equivalent current dipole (ECD), which represents the

centre of an active area as well as the mean direction and

strength of current flow in that area (Baillet et al. 2001).

ECDs have been used to model sources of rhythmic

activity, within selected frequency ranges and separately at

each time instant (Liljeström et al. 2005; Salmelin and Hari

1994). While this method can be very powerful in presence

of a limited number of sources, it includes user-dependent

choices and benefits from expertise. With the minimum-

norm estimate (MNE) approach, the measured MEG sig-

nals are assumed to be generated by an electric current

distribution that has the lowest total power, or lowest total

current in the case of the spatially sharper minimum-cur-

rent estimate (MCE) (Jensen and Vanni 2002; Jerbi et al.

2007).

Differently from MNE, beamformers estimate source

activity in one voxel while suppressing contribution from

activity in the other voxels. This procedure is repeated for

all voxels by means of data covariance, yielding a 3D map

of neural activity (Vrba and Robinson 2001). Dynamic

imaging of coherent sources (DICS) is a frequency-domain

implementation of a minimum variance adaptive beam-

former (MVAB) (Van Veen et al. 1997) that has been

successfully applied on MEG data to map both oscillatory

power and coherence (Gross et al. 2001, 2002; Hirschmann

et al. 2011; Kujala et al. 2007; Liljeström et al. 2005;

Mazaheri et al. 2009; Osipova et al. 2006). The DICS

spatial filter uses the cross-spectral density (CSD) of the

Fourier-transformed sensor data as the basis of data pro-

cessing, instead of the data covariance employed in the

time-domain beamformer.

Minimum variance adaptive beamformer (MVAB)

assumes source activities to be uncorrelated. However,

this condition is obviously not always satisfied in real

brain activity. Indeed, correlation, when present, is an

essential marker of functional connectivity. The quality

of the MVAB estimate deteriorates when the sources are

correlated or the number of samples is small. In addition,

if more than two sources are simultaneously active, the

bias due to a mutual correlation among source activities

is not predictable at a theoretical level (Sekihara et al.

2002; Zoltowski 1988). Furthermore, a high level of

coherence between sources in one frequency band can

affect the beamformer time course reconstruction and

source localization also in other frequency ranges where

the time courses are not necessarily correlated (Dalal

et al. 2007).

The correlation bias in beamformer algorithms has been

addressed by means of various approaches. One possible

solution is the use of different spatial filters (correlation

biased and not biased) on the same data. Unfortunately, the

interpretation of the resulting set of mapping outputs

remains subjective (Belardinelli et al. 2007). The use of a

priori information has been considered in the case of two

active sources (Brookes et al. 2004). One possible solution

with a more general application is the modeling of corre-

lation between sources by means of variational Bayesian

methods (Dalal et al. 2006). Such an approach facilitates

accurate recovery of source locations and their time cour-

ses of activation. This can be an effective procedure but

remains a two-step solution to the problem: Firstly, the

interfering sources need to be modeled appropriately and,

subsequently, a facilitated region suppression of interfering

sources is applied.

Bayesian variational methods based on the Laplace

approximation like greedy search (GS) (Friston et al. 2008a)

or automatic relevance determination (ARD) (Friston et al.

2008b) can take correlation effects into account by means of

information priors. However, the defaults in the SPM soft-

ware (http://www.fil.ion.ucl.ac.uk/spm/) where the algo-

rithms are implemented, currently consider exclusively

correlated sources for symmetrical brain areas in the two

brain hemispheres (Belardinelli et al. 2012).

Recently, the relevance vector machine (RVM), a

Bayesian algorithm for learning sparse models from

possibly over-complete data sets, has been employed to

remove the bias due to correlation between sources. A

new ‘‘unbiased’’ covariance is calculated as a basis for

MVAB to reach from the sensor level to the brain space

(Wipf et al. 2009, 2010). This procedure has been

applied to estimate the covariance structure of source

activity by means of a maximum likelihood iterative

method.

Here, building on the work by Wipf and colleagues, we

introduce a frequency-domain approach that employs RVM

(fdRVM) to map the power of oscillatory brain activity

without relying on the cross-spectral density as in the

MVAB-based procedure (such as DICS). Our approach

separates the processing of real and imaginary parts of the

Fourier-transformed time series by means of two distinct

parallel loops and subsequently combines the real and

imaginary source power components into a single mapping.

This has remarkable computational advantages that are

elucidated in the ‘‘Methods’’ and ‘‘Discussion’’ sections.

Furthermore, the iterative learning procedure based on

Bayesian assumptions removes the undesirable effects of
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coherence and provides a reliable and noise-resistant tool

for mapping electrophysiological brain rhythms. Here, we

tested the performance of fdRVM and compared it with

that of DICS. Two types of simulated MEG data were

considered, as well as two real MEG data sets (continuous

finger movement, resting state). The first simulation fea-

tured oscillatory sources that remained active throughout

the time window of interest (‘steady-state’). The second

one consisted of sources that were active only transiently

within the analyzed time window (‘transient’). Effects of

low and high mutual coherence on source localization were

evaluated at different signal-to-noise ratios (SNRs). The

power mapping results on the simulated data were quan-

tified using three parameters: (a) number of sources cor-

rectly detected, (b) full width at half maximum (FWHM) of

the source estimates and (c) cumulative mislocalization of

the sources.

Methods

Dynamic imaging of coherent sources (DICS)

Dynamic imaging of coherent sources (DICS) utilizes a

MVAB beamformer in the frequency domain (Gross et al.

2001). A linear transformation based on the cross-spectral

density (CSD) matrix filters the source activity in a given

frequency band in a certain voxel (grid point) with unit

gain, while suppressing contribution from the other voxels.

By means of this filter, it is possible to calculate either

power or coherence (with a reference signal) of sources at

the frequency of interest.

For every voxel, two orthogonal unit current dipoles are

considered. In a spherical conductor, such dipoles span the

space containing all possible source orientations that can be

detected with MEG. For the more realistic boundary ele-

ment method (BEM) model of the brain, this approxima-

tion still holds with satisfactory results. The third

eigenvalue, corresponding to the pseudo-radial vector, is

markedly smaller than the ones corresponding to the tan-

gential directions in practically every voxel within the

brain.

The source cross-power estimates between the two

dipole components at the i-th voxel is a 2 by 2 matrix with

singular values k1 and k2. If k1 � k2, the source can be

considered to have a fixed orientation. Otherwise, the

power estimate can be obtained by computing the trace of

the matrix (Gross et al. 2001).

DICS regularization factor was obtained by adjusting

the trade-off between spatial sharpness and noise sensi-

tivity (Gross and Ioannides 1999). For both DICS and

fdRVM, normalized leadfields were employed.

fdRVM, a frequency-domain RVM approach

Bayesian inversion schemes have been extensively con-

sidered for source localization in MEG/EEG (Auranen

et al. 2005; Friston et al. 2002; Nummenmaa et al. 2007;

Phillips et al. 2005; Sato et al. 2004; Wipf and Nagarajan

2009). Basically, the aim of Bayesian methods is the

covariance estimation of the sources S that best explains

the measured data M. Once the probability distribution of

Si is known, a meaningful parameter (its mean, for exam-

ple) can be used as an estimate of the source activity on the

i-th voxel. fdRVM accommodates real and imaginary ser-

ies obtained from Fourier-transformed data in two separate

routines and processes them following the steps of Wipf

and colleagues (Wipf et al. 2010) with ‘MacKay’ updates

(MacKay 1992).

The original aim of RVM is the prediction of future data

by employing an analogous set of data from the past

(Tipping 2001). For this purpose, a kernel function defining

a set of basis functions is estimated. These basis functions,

in turn, are supposed to generate the new (future) data.

RVM, by means of a probabilistic framework, makes

predictions based on the function

f ðy;wÞ ¼
XN

i¼1

wiKðy; yiÞ þ w0 ð1Þ

where f is a function defined over the input space upon

which predictions are based, y is the input data array and

wi are adjustable weights. K is a kernel function defining

a set of basis functions for each data sample xi. In

general, RVM’s approach to problem (1) is similar to

that of a support vector machine (Scholkopf et al. 2000),

with the basic difference that RVM adopts an entirely

probabilistic approach. A prior over the model weights is

introduced. Such a prior is regulated by a set of hyper-

parameters associated with the weight set. Upon con-

vergence of the iterative procedure, posterior probability

distributions of a large part of the weights show a

prominent peak around zero. In this way, sparsity is

achieved, and the training vectors associated with the

non-zero vectors are labeled relevance vectors (Tipping

2004).

Rather than predicting future biomagnetic data, we

propose a particular use of RVM to localize rhythmic

activity in the brain without the bias due to correlation

among sources. Two different routines separately handle

real and imaginary parts of Fourier-transformed MEG/EEG

data. The final power mapping is obtained as a combination

of the real and imaginary RVM outputs for each voxel.

Separate handling of the two Fourier components is per-

mitted by the linearity of the localization algorithm and by

the independence of real and imaginary series. A physical
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interpretation of the real and imaginary series obtained

from FFT-transformed signals is not straightforward. The

Fourier transform employs the complex values for a com-

pact representation of sinusoidal and cosinusoidal compo-

nents. Both imaginary and real series contribute in a

different and non-negligible way to the mapping of

rhythmic source activity.

Our procedure rests on the following steps: The time-

domain data of each sensor are divided in Nw partially

overlapping windows (75 % overlap in our case). The

samples in each window (2048 in our case) are Fourier

transformed. We assume a model of the type Y = LS ? e,

where Y = [y(1),…, y(Nw)] is our data array at one fre-

quency of interest (each time window yields one value at a

given frequency) with dimensions [Ns * Nw], where Ns is

the number of sensors. S = [s(1),…, s(Nw)] are the

unknown source activities with dimensions [Nv * Nw],

where Nv is the number of voxels within the brain. The

elements of S can be considered as the weights w in the

traditional RVM formulation. e denotes the error due to

noise and correlation bias and is assumed to have a

Gaussian distribution pðejYÞ ¼ N ð0;ReÞ. L is the lead-

field matrix of dimensions [Ns * Nv]. The rows of L are

the kernel components of K in Eq. (1); for the i-th sensor,

Li(Y) = K(Y, yi), where yi = [yi(1),…, yi(Nw)] is the data

array for one frequency of interest and every time window.

The real (R) and the imaginary (I) part of our FFT data

are processed by two independent RVM routines under

the following assumptions: a likelihood model for Y

which is a complex Gaussian (Tipping 2001), given fixed

sources:

pðYR;I jSR;IÞ¼ ð2pReR;IÞ�NS�Nw=2
exp � 1

2
ðR�1

eR;I YR;I � LSR;I

�� ��2

=

� �

ð2Þ

where Re R,I is the error variance and �k k= is the Frobenius

norm. As additional constraint to avoid over-fitting in the

estimation of S from Eq. (2), a zero-mean Gaussian prior

distribution over real and imaginary source components is

assumed:

pðSR;I jcR;IÞ ¼
YN

i¼1

NðSR;Ii
j0; c�1

R;Ii
Þ ð3Þ

where cR;I ¼ cR;I1;...;
cR;IN

h i
is the set of unknown hyperpa-

rameters controlling the prior covariance of each row of

SR,I.

The columns of S are assumed having independent

probability distributions.

The hyperparameters can be estimated from the data by

means of a maximum likelihood optimization

CR;I ¼ arg max
cR;I

pðcR;I jYR;IÞ

We know from the Bayes theorem that as follows:

pðcR;I jYR;IÞ / pðYR;I jcR;IÞpðcR;IÞ

To obtain the best estimation of c, it is possible to integrate

out S and then maximize the likelihood:

pðYR;I jcR;IÞ ¼
Z

pðYR;I jSR;IÞpðSR;I jcR;IÞdSR;I ð4Þ

For the assumptions adopted in (2) and (3)

p YR;I jcR;I

� �
¼ 2pRYR;I

�� ���NS�Nw=2

� exp �trace YH
R;IR

�1
YR;IYR;I

� 		�

where

RYR;I ¼ ReR;I þ LRR;IL
T ð6Þ

are the real and imaginary model covariances of the FFT

signals, respectively.

The estimation of the hyperparameters c is obtained by

means of a Type II expectation–maximization (EM) algo-

rithm which considers S as hidden data (MacKay 1992).

The marginalization provides a regularizing mechanism

that shrinks the majority of the elements of c to zero. For a

generic mth voxel, if cm = 0 then Sm = 0. Here, we

assume hyperparameters with a uniform flat distribution.

This assumption implies that no voxel is considered as a

privileged site for a source due to prior information

(automatic relevance determination) (Tipping 2001). Such

non-informative distribution can be easily changed if reli-

able priors are available.

Instead of obtaining the maximum likelihood estimate of

cR,I by maximizing the probability distribution p(YR;I jcR;IÞ
as outlined in Eq. (4), we can minimize the negative log-

arithm of the cost function (Wipf and Nagarajan 2009):

LðcR;IÞ ¼ � log pðYR;I jcR;IÞ
¼ trace CYR;IR

�1
YR;I

� 	
þ log jRYR;I j

� �
ð7Þ

The expectation steps of the EM procedure involve the

updates for the estimation of unknown SR and SI and their

covariance:

E SR;I jYR;I ;CR;IðkÞ

h i
¼ CR;IðkÞL

T ðCYR;IÞ�1
ðkÞYR;I ð8Þ

Cov SR;IðnÞjYR;IðnÞ;CR;IðkÞ

 �

¼CR;IðkÞ �CR;IðkÞL
TðCYR;IÞ�1

ðkÞLCR;IðkÞ

where n is the window index and CR;I ¼ diag(cR;IÞ.
The maximization step involves the marginalization

over c:
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cR;Iðkþ1Þ ¼
1

n
cR;Iðk�1ÞL

T
i ðRYR;IÞ�1

ðk�1ÞY
���

���
2

=

�

� tr cR;Iðk�1ÞL
T
i ðRYR;IÞ�1

ðk�1ÞLi

� 	� 		�1

ð9Þ

After the algorithm has converged to a maximum

likelihood set cR,Iconv, from Eq. (8), the RVM posterior

mean estimates are obtained:

ŜR;I ¼ E SR;I jYR;I ; cR;Iconv


 �
¼ CR;IconvLTðRYÞ�1

R;IconvYR;I

ð10Þ

For source activity estimation, the posterior means ŝRi
¼

E SRðiÞjYR; cRconv½ � and ŝIi
¼ E SIðiÞjYI ; cIconv½ � for the i-th

voxel at a frequency of interest are considered. Then,

ŝi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ŝ2

Ri þ ŝ2
Ii

q
ð11Þ

provides the power estimate at that frequency. The power

mapping is performed over the whole brain. The left term

in Eq. (11) defines the fdRVM imaging output for each

brain voxel.

It is worth noting that the relationship between estimated

source activity and sensor signals in Eq. (10) is common to

several Bayesian and classical schemes (Friston et al.

2008b; Mosher et al. 2004). For instance, DICS, in place of

CR,I matrices, utilizes LT
i Crðf ÞLiÞ�1

as a gain factor

between source and sensor level, where Cr(f) is the CSD.

Construction of simulations

We designed a simulated set of three cortical sources to

study the effect of correlation level and SNR, with the

following guidelines: (a) exclusion of possible bias due to

hemispheric symmetry effects (some Bayesian algorithms,

due to prior information on bilateral correlated sources,

tend to detect symmetric sources as false positives),

(b) variation of mutual distances between sources to

monitor the effect of proximity, and (c) variation of

source depths from the cortical surface. Three neural

sources, represented by current dipoles, were placed

within one hemisphere only, here in the right hemisphere

(Fig. 1a), asymmetrically with respect to the x axis that is

directed from the left to the right ear. The intersource

distances varied from 3 to 9 cm: Source S3 was placed

posteriorly in the brain (y = -3 cm; y axis from the back

to the front of the head), 6 cm from source S2 (y = 3 cm)

and 9 cm from source S1 (y = 6 cm). The other two

coordinates were x = 4 cm and z = 7 cm for each of the

three sources. The brain of a real subject was chosen as

the source space. The BEM model generated for this brain

was used for the solution to the forward problem. The

grid step within the brain for both DICS and fdRVM was

6 mm. The distance between each simulated source

location and the nearest grid point was \10-2 cm.

A Neuromag 306-channel whole-head MEG system

(Elekta Oy, Finland) was used for both signal generation

and localization. The device contains 102 triple sensor

elements composed of two orthogonal planar gradiome-

ters and one magnetometer. The planar gradiometers

detect the maximum signal directly above an active cor-

tical area. In this study, the analysis was performed using

the gradiometers.

We simulated two 10-min data sets, one with ‘steady-

state’ (with respect to the time-analysis window) sources
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 Low coherence  High coherence
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Fig. 1 Locations and time–frequency representations of the activity

of each simulated source. a Three sources (anterior S1 and S2,

posterior S3,) were placed in the right hemisphere. b A schematic

representation of how the simulated data with ‘steady-state’ and

c ‘transient’ activity at high ([0.8) and low (\0.2) coherence behaved

in time and frequency
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and another with ‘transient’ sources, for the following

reasons:

(a) Frequency-domain analysis methods typically assume

‘steady-state’ patterns using long stretches of data as

the analysis window. Normally, several minutes and

thousands of samples are considered (Fig. 1b). This

implies that ‘transient’ sources (Fig. 1c) are detected

at a lower SNR with respect to sources which display

activation that spans the entire time window of

analysis. In fact, even if a source is active only for

a portion of the time stretch, the power localization in

the frequency domain is biased by the whole amount

of noise present in the entire time window. Therefore,

a correct localization of this type of source tends to be

problematic and requires particularly sensitive tools.

(b) In a simulation involving several sources, the degree

of correlation among them can be manipulated in

various ways. With ‘steady-state’ sources, the fre-

quency or amplitude distribution over time can be

adjusted to the desired level (Fig. 1b). With ‘transient’

sources, more leverage is available: Even if the time

courses are very similar, their mutual correlations can

be altered by adjusting their temporal overlap

(Fig. 1c). A large overlap yields high coherence,

whereas a small or nonexistent overlap assures low

coherence. The use of different set-ups covers several

realistic scenarios, as brain areas may have different

activation times, time courses and phase lags.

In the first simulation (‘steady-state’ sources, Fig. 1b),

the time courses of activation in the source areas were

created firstly by setting instantaneous frequencies at each

time-point and then generating the corresponding fre-

quency-modulated signals. The instantaneous frequencies

consisted of a base frequency and a random component.

The base frequency was set to 6 Hz, and the random

component for each source was set so that the instanta-

neous frequencies fell between 5 and 7 Hz at all time

points. The random components were varied until all the

sources showed either high ([0.8) or low (\0.2) coherence

with each other.

In the second simulation, the amplitudes of the source

time courses were modulated within the 10-min time

window of interest so that they could be considered

‘transient’ with respect to that time interval. The base

frequency f was 6 Hz, i.e., the same as in the ‘steady-state’

simulation. The three time courses S1 (t), S2 (t) and S3 (t)

were generated as follows:

SkðtÞ ¼ exp((t � tkÞ2=A2
kÞ � sin(2pðf ðt � t�kÞÞ

A, tk and tk* are parameters that determine the signal extent

and shape and its position in the time window. In the high-

coherence simulation, the values were as follows: A1 = 35;

t1 = 43; t1* = 0.2; A2 = 12; t2 = 45; t2* = 0.1; A3 = 15;

t3 = 40; t3* = 0.2. In the low coherence simulation, the

parameters assumed the values: A1 = 35; t1 = 15;

t1* = 0.2; A2 = 2; t2 = 90; t2* = 0.9; A3 = 15; t3 = 50;

t3* = 0.1. The S1 (t) time course can be considered a limit

case of a ‘transient’ source. The relatively high value of A1

attenuated the modulating action of the exponential.

Therefore, source S1 remained active for the whole span of

the time window, although at the extremes of the time

window, its amplitude values are remarkably narrower than

in the central section (Fig. 1b, c). The sampling frequency

for both simulations was 300 Hz.

Noise was generated at the sensor level by means of

white noise (full frequency band: 0–100 Hz). SNRs were

simulated with a range from 0 to -13 dB and a 1 dB step.

Truly realistic brain noise has turned out to be difficult to

simulate (Ghosh et al. 2008). As an alternative, we addi-

tionally tested resting-state data (eyes closed) as noise when

using fdRVM to localize sources from ‘steady-state’ data at

high coherence and 5 SNRs (0, -3, -6, -9, -12 dB).

Real data

This test exploited data from two earlier studies on healthy

right-handed subjects: (a) Finger movements (Gross et al.

2002): Six subjects were asked to perform continuous

sinusoidal flexion and extension movements in a horizontal

plane with their right index finger. The data were recorded

with a 122-channel Neuromag MEG system (Elekta Oy,

Finland). (b) Resting state: Two subjects were asked to sit

relaxed, with their eyes open (2 min) and closed (2 min).

The data were recorded with the same MEG system that

was used to generate the simulated signals.

Comparison of fdRVM and DICS performance

The localization performance of fdRVM and DICS on the

parametrically varying simulations was evaluated by

means of three parameters:

(a) The number of correctly detected sources. ‘Correct

detection’ required that the local maximum fell on the

correct grid point or on an immediately neighboring

grid point. The cut-off threshold was set to 0.25

(normalized to the global maximum). Since all the

simulated sources had the maximum unit amplitude, it

was assumed that a reduction in the estimated

amplitude by more than 75 % could not be considered

correct.

(b) The spatial spread of the estimated source peak. As an

expression of the spatial spread of the estimate, the full

width at half maximum (FWHM) of source S3 was

computed for every condition (low/high coherence,
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steady-state/transient time courses) at different SNR

levels. By approximating the profile of the source

intensity as a Gaussian function, FWHM was obtained

as the number of grid steps between the two voxels at

which the source intensity was equal to half of its

maximum value. Only S3 (Fig. 1a) was considered in

this evaluation because S1 and S2 were often detected

as one single source by DICS (and sometimes by

fdRVM as well) in conditions of low SNR and/or high

coherence.

(c) The cumulative distance of the misplaced peaks of

activity with respect to the actual location.

Results

Simulations

Figure 2 illustrates source localization using fdRVM and

DICS for the four different types of simulations (‘steady-

state’ and ‘transient’ oscillatory activity, low and high

coherence among sources at SNR = -4 dB). Figure 3

quantifies the number of detected sources as a function of

SNR for the two techniques. When a source was detected,

the localization was mostly accurate, i.e., the maximum of

the power estimate fell on the correct grid point or on one

of its immediate neighbors. The main cause of misplace-

ment errors was the merging of the two anterior sources,

resulting in a unique main peak between the two actual

dipoles. Figure 4 depicts the spatial spread (FWHM) of the

power estimate as a function of SNR (A, B) and the

cumulative distance of mislocated sources from the actual

ones (C, D). With decreasing SNR, the detection accuracy

decreased more rapidly for DICS than fdRVM in each

condition (Fig. 3). The first drop from 3 to 2 detected

sources with DICS (at -4 dB for low-coherence and 0 dB

for high-coherence ‘steady-state’ activity) was due to the

merging of estimated source activity of the two frontal

sources (Fig. 3a, c). The apparent merging was a result of

the increasing spatial spread of the estimated activation

with decreasing SNR (Fig. 2b, d). This increase had a

markedly steeper slope for DICS than for fdRVM, in both

low- and high-coherence simulations (Fig. 4a, b). In

fdRVM, due to the algorithm action that prunes non-rele-

vant components to zero (see ‘‘Methods’’ section), the two

frontal sources remained separable down to SNR = -

8 dB. The cumulative distance of misplaced sources from

the actual locations plotted in (Fig. 4c, d) shows, as

expected, that at low SNRs, the correlation level does not

play a significant role, as the plots show no significant

difference between conditions of high and low correlation

for either DICS or fdRVM. To test the effect of different

kinds of background noise on our performance comparison,

we replaced the white noise with rest data in a subset of test

conditions: continuous data, high coherence, 5 signal-to-

noise ratios (0, -3, -6, -9 and -12). The results remained

remarkably unchanged: the root mean squared deviation

between source activity results with realistic noise and

Gaussian distributed noise never exceeded 0.1. Replacing

the white noise by rest data thus seemed to have little

influence on the resulting maps.

In conditions of both low and high coherence, fdRVM

detected sources S1, S2 and S3 with the correct relative

intensities. Since the simulated peak amplitude was the

same for all sources (peak value = 1), the discriminating

parameter is expected to be the duration of the source time

course. Hence, the correct order of detected intensity

should be S1 [ S3 [ S2. This order was observed with

fdRVM (Fig. 2c) while DICS did not detect the correct

relationship between the effective source intensities

(Fig. 2d).

Overall, the relationship between the performances of

fdRVM and DICS as a function of SNR was similar in both

the ‘steady-state’ and ‘transient’ source simulations. As

expected, the decreasing SNR affected both algorithms,

more when the sources were active only transiently than

when they were active throughout the analysis time win-

dow (‘steady-state’). fdRVM performed systematically

better than DICS on these simulated data sets, especially

when the coherence between sources was high ([0.8).

Figure 5 shows the SR and SI maps in the case of steady-

state sources and high coherence with SNR = -4. The

zero locations of the real and imaginary gamma maps are

essentially the same, but their contributions to source

intensities are different. Figure 5a displays the quantity:

ŜI � ŜR

� 	
�min ŜI � ŜR

� 	� 	.
max ŜI � ŜR

� 	
� ŜI � ŜR

� 	� 	

if ŜI � ŜR

� 	
[ 0; otherwise 0;

i.e., the contributions of the imaginary part that exceed

those of the real part. Figure 5b depicts the opposite

measure:

ŜR � ŜI

� 	
�min ŜR � ŜI

� 	� 	.
max ŜR � ŜI

� 	
� ŜR � ŜI

� 	� 	

if ŜR � ŜI

� 	
[ 0; otherwise 0;

i.e., the contributions of the real part that exceed those of

the imaginary part. The anterior source receives a stronger

contribution from the imaginary component. Figure 5c

displays the combined effect Ŝ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ŝ

2

R þ Ŝ
2

I

q
, similarly to

Fig. 2. Accordingly, the real and imaginary contributions

are non-negligible and complementary, and only the

composition of the two provides the correct mapping.
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Real data

In finger movements, a clear spectral peak at around 10 Hz

was detectable at the sensor level over the sensorimotor

area (Fig. 6a, upper panel; example of one subject’s data).

Oscillatory activity over the occipital area was evident as

well. Localization of rhythmic activity at 8–12 Hz using

fdRVM revealed a source in the right (ipsilateral) primary

motor area (Fig. 6a, lower panel). It may reflect ipsilateral

motor inhibition, which exerts an effect on the contralateral

motor cortex (Daskalakis et al. 2002). Activity was

detected in the occipital area as well. DICS localized the

activity in the occipital area (Fig. 6a, lower panel); detec-

tion of the weaker sensorimotor sources requires that the

signal from the strong occipital source first be removed

(Liljeström et al. 2005).

In the resting-state data, as well, a strong power peak at

about 10 Hz was evident at the sensor level (Fig. 6b, upper

panel; example of one subject’s data). Localization of

9–12 Hz activity using fdRVM displayed bilateral sources

in the sensorimotor area (Fig. 6b, lower panel). Source of

rhythmic activity in the occipital cortex was detected only

when the cut-off threshold was lowered from 25 to 10 % of

maximum power. DICS localized again the main activity in

the occipital area, which would need to be removed in

order to fully reveal the weaker sensorimotor sources

(Fig. 6b, lower panel). Even in real data, fdRVM thus

features very focal localizations, possibly penalizing

sources which spread over a large number of sensors,

whereas DICS mapping is spatially rather extended. The

absence of occipital activity in the fdRVM localization in

Fig. 6b is also probably influenced by the algorithm’s sharp

selection of the relevant frequency bins; the spectral peaks

in the occipital area are 1–2 Hz higher in frequency than

the peaks in the sensorimotor area, at the border of the

frequency band of interest.
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Fig. 2 Localization of

simulated oscillatory sources.

a fdRVM localization of

sources in the ‘steady-state’

condition, for low and high

coherence, at SNR = -4 dB.

b DICS localization of sources

in the ‘steady-state’ condition,

for low and high coherence, at

SNR = -4 dB. c fdRVM

localization of sources in the

‘transient’ condition, for low

and high coherence, at

SNR = -2 dB. d DICS

localization of sources in the

‘transient’ condition, for low

and high coherence, at

SNR = -2 dB. The activity

mapping was normalized to the

maximum peak. The color bars

indicate normalized power

(from 0 to 1). The cut-off

threshold was set at 25 % of the

maximum power value (color

figure online)
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Discussion

In this study, an RVM-based algorithm was adapted for

mapping brain rhythmic activity from Fourier-transformed

biomagnetic signals. The signals in the time domain were

partitioned in windows with an equal number of time

samples. Subsequently, a Fast Fourier Transform was

applied to each window, and one mean complex number

was calculated for each frequency and time window, thus

yielding a complex series in the time domain. The main

idea of fdRVM consists of separately handling the resulting

real and imaginary series by means of two distinct parallel

loops and, consequently, combining the real and imaginary

source power components in one single mapping. Criti-

cally, such a separation is permitted by the linearity of the

RVM model and by the independence of the real and

imaginary series.

Wipf and Nagarajan (2007) also considered the perfor-

mance of RVM on complex data, they did this by simu-

lating sources that showed complex activity (i.e., multi-

dimensional sources). Thus, their approach was funda-

mentally different from the frequency-domain analysis

conducted here, where the simulated and recorded activity

consist of real-valued data (representing the type of activity

and recordings that beamforming approaches are generally

applied to) and the complex nature of the signals is due to a

subsequent transformation (FFT) that aims to disentagle

the content of the signals at different frequencies.

fdRVM has two useful computational properties: (a) It

does not calculate the imaginary mixed terms produced by

the multiplication of source CSD for its transposed con-

jugate. For example, in DICS, these terms are initially

calculated but then discarded when the source-level power

is estimated along the two orthogonal tangential directions,

i.e., when only the real part of the 2 9 2 complex source

activity matrix is considered for SVD evaluation (Gross

et al. 2001). (b) fdRVM allows to process the real and

imaginary contributions in parallel and simultaneous loops.

This saves computation time and, with respect to the

standard implementation of RVM, yields exclusively the

terms needed for the power mapping (real and imaginary

components, no spurious terms). The Fourier transform

employs the complex numbers for a compact representa-

tion of sinusoidal and cosinusoidal components. Both

imaginary and real series contribute in a different and non-

negligible way to the mapping of rhythmic source activity.

Among various existing and fairly widely used methods

for localization of rhythmic brain activity (minimum-norm

estimates, beamformers and sequential dipole fitting), a

beamformer-based technique (DICS) was found to be the

most sensitive, and it could separate close-by sources better

than other methods (Liljeström et al. 2005). Notably,

however, the main assumption of beamformer algorithms is

that the source time courses are uncorrelated. This

assumption is no longer satisfied when SNR is increased

and the degree of correlation among sources is high. At low

SNR, an inaccuracy in source localization is mainly due to
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maximum of the source estimates from fdRVM (black line) and DICS

(gray line) maps as a function of decreasing SNR for a low and b high

coherence among sources. In conditions of high coherence, DICS

detected the anterior sources S1 and S2 as merged together in both the

‘steady-state’ and ‘transient’ simulations (cf. Fig. 2b, d). For this

reason, the FWHM results are plotted only for the posterior source S3,

as an average of the ‘transient’ and ‘steady-state’ estimates. Below,

cumulative source mislocalization is plotted for both algorithms in

case of c low and d high correlation
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an overestimation of the spatial spread of the detected

source or to a missing detection rather than to a bias caused

by correlation among the sources. In real brain activity, the

observed coherence levels tend to be fairly low (Kujala

et al. 2007; Timmermann et al. 2002) but the SNR is low as

well. Since there is no fixed value for a ‘safe’ limit of

power mapping with beamformers in real data, it would

beneficial to have alternative—or supporting—methods

that are less influenced by correlations. RVM-based

approaches (Wipf and Nagarajan 2009) can provide this

type of tools.

The fdRVM approach was compared with the beam-

former method DICS using two types of simulated data as

well as two different sets of real data. The simulated data

comprised ‘steady-state’ oscillations and ‘transient’ sour-

ces, with both low and high degrees of mutual correlations.

fdRVM showed three main advantages with respect to the

beamformer-based technique: (a) It removed the undesir-

able effects of correlation when analyzing Fourier-

transformed MEG/EEG data in the frequency domain.

(b) The pruning of output components characteristic of the

EM algorithm yielded localization results that were

markedly more focal than with the beamforming approach.

(c) fdRVM maintained its spatial resolution even at low

SNR. Due to its resistance to correlation and noise effects,

fdRVM can be used to reconstruct an unbiased CSD that

shares the power-spectral properties of the original CSD.

One might thus be able to obtain DICS coherence estimates

using the unbiased CSD. Moreover, the imaginary com-

ponent SI can be employed for functional connectivity

between one source voxel and the rest of the brain. One

could indeed use just the complex signal part to avoid

leakage when calculating connectivity measures uniquely

based on phase like imaginary coherence (Nolte et al.

2004) and Phase Lag Index (Stam et al. 2007).

An important contribution to the fdRVM correct per-

formance is given by a proper estimation of the error

variance Re in Eq. (10). Since we are analyzing rhythmic
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activity in the frequency domain, a noise estimation cannot

be determined from baseline intervals as in (Zumer et al.

2007). The error variance represents the trade-off between

data fit (small values of ReR,I correspond to a noise-free

estimation of the data) and mapping sparsity (high values

of ReR,I correspond to elevated confidence in the hyperp-

riors effect and, conversely, low trust in the data). We

consider this term as an estimate of noise variance a
mediated by a multiplicative constant k which expresses

our confidence in the hyperpriors: Re = k�aR,I. An ade-

quate choice for k in the case of noisy oscillating signals

appears to be in the range between 10-4 and 10-1. The

noise variance was estimated taking into account the poor

SNR of our data. Since in the simulations, the noise was of

the same amplitude as the signal or higher, we approxi-

mated the noise variance to the largest eigenvalue of the

signal variance CYR,I. In practice, the k factor implies a

probable underestimation of the effects of noise. Still, an

approach underestimating the noise variance (or even set-

ting it to zero) appears to be a good practice for a better

final mapping (Wipf et al. 2009). This kind of approach

allows for more accurate results but requires a longer time

for the algorithm to converge.

Frequency-domain RVM method (fdRVM) was more

robust against poor SNR than DICS but, similarly to DICS,

its performance was found to drop at lower SNR. The SNR

may decrease via increasing noise level or shorter duration

of the source activation. In the case of ‘steady-state’ sour-

ces, the algorithm yielded a less focal localization under

condition of high than low coherence (Fig. 2a). Since cor-

relation cannot affect the global minimum of convergence,

we must assume that the algorithm became stuck in a local

minimum very close to the global one. However, the

influence of coherence level was clearly more marked on

DICS than on fdRVM maps (Fig. 2b, d). fdRVM performed

in a consistent manner on real data and it retained its fo-

cality advantage with respect to the beamformer-based

technique. Since fdRVM detects amplitudes of the simu-

lated sources in the correct order of intensity (as shown in

the transient source simulation), whereas DICS does not,

contrasting experimental conditions A and B should bring a

further relative benefit to fdRVM results. This information

is partly included already in the single condition simulation.

If we consider our simulations as the active condition, our

results show that while DICS noise-normalized mapping

fails at low SNR, fdRVM ‘‘absolute’’ mapping shows the

correct locations. If we were to add a baseline condition to

this analysis, it could not improve DICS results as the ori-

ginal mapping has actually failed, rather than yielding

insensitive results which could be sharpened by contrasting.

For fdRVM, on the other hand, comparing to a baseline

could further improve the results. The mapping in the

baseline condition would probably be pruned to zero in each

voxel (if baseline = homogeneous noise on the sensors) or

to lower values than in the active condition (if base-

line = less signal than in the active condition). When DICS

yields ‘‘correct’’ mapping (high SNR), contrasting would of

course be reasonable (at least in simulations).

At present, the main disadvantage of fdRVM is the

computational time. The final power mapping file for one

10-min epoch requires 2–3 h on a single PC processor core.

This inconvenience can be addressed both on algorithmic

(faster convergence of the iterative EM procedure) and

technical level (threaded programming).

Conclusions

Because of its sensitivity, robustness and steep localization

mapping, fdRVM may afford some new insights to the study

of brain rhythmic activity. It may be helpful, for example, in

detecting sources of oscillatory activity and facilitating the

study of their dynamics, even when the activity is strongly

correlated with that of other brain areas. In particular, dis-

crimination among ‘transient’ sources (i.e., not active for the

whole duration of the time window of interest) appears to be

possible with fdRVM. In conditions of equal source inten-

sity, sources that had a longer duration were detected as more

intense in the frequency-domain localization. A natural

continuation of the present work would be the addition of

time information in the algorithm. By means of a time–fre-

quency resolved RVM, brain sources showing different

intensities in the frequency domain could be correctly dis-

criminated by their different intensities, durations, or both.
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source mapping

Fig. 6 Power mapping results on two real MEG data sets. a Slow

horizontal movement of the right index finger, one subject. On top

power spectra at the sensor level. The helmet-shaped array of sensors

(Neuromag system, 122 gradiometers) is displayed flattened onto the

plane, with the nose pointing upwards. Data of two sensors (boxes)

are shown enlarged. Below, source-level maps at 10 Hz obtained with

fdRVM and DICS. b Resting-state data of one subject. Sensor-level

helmet view on top (204 gradiometers; Elekta), localization results

below (centered at 10.5 Hz). The color bars indicate normalized

power (from 0 to 1) (color figure online)

Cogn Process (2013) 14:357–369 367

123



References

Auranen T, Nummenmaa A, Hämäläinen MS, Jääskeläinen IP,
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