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Abstract

Magnetoencephalography (MEG) has, in comparison with other functional imaging modalities, unique properties which makes it the
prime candidate for the noninvasive investigation of long-range oscillatory interactions in the human brain. Recent methodological
developments based on spatial filtering introduced the computation of functional tomographic maps covering the entire brain and
representing the distribution of coherence to a given reference signal or the distribution of power. Because of the spatially inhomogeneous
sensitivity profile of the MEG sensors, the spatial resolution of the resulting functional maps is not isotropic across the brain. Here, we
introduce a convenient analytic expression for the computation of the spatial resolution at any given point in the brain. We derive the
dependence of the resolution on the signal-to-noise ratio and on the changes of the leadfields. The resolution map can be displayed on
anatomical MRI in the same way as the functional maps. In addition, we establish a procedure for computing a confidence volume of local
maxima which is based on a bootstrap method. The confidence volume is a measure for the uncertainty of the localization. It is important
for assigning local maxima of activation to specific anatomical structures and may be used to test for differences in localization between
different experimental conditions.
© 2003 Elsevier Science (USA). All rights reserved.
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Introduction

Although most functional imaging studies are still de-
signed to statically assign brain function to brain structure,
it is increasingly recognized that human brain function can
only be adequately studied by taking into account the highly
dynamic and transient nature of activity patterns and inter-
actions evolving simultaneously in space and time. Magne-
toencephalography (MEG) and electroencephalography
(EEG) provide the appropriate temporal resolution to study
the dynamics of brain processes. Additionally, state-of-the-
art MEG/EEG systems offer a dense spatial sampling of the
whole scalp with a variety of sensors.

Recent methodological developments further increased
the potential of MEG/EEG to study brain dynamics. These

methodological advances are taking place mainly in the
areas of, first, time series analysis (MEG/EEG) and, second,
tomographic mapping of oscillatory activity and coupling
(MEG). In the first area, substantial progress has been made
in the characterization of strength and direction of phase
synchronization of two oscillatory signals (Varela et al.,
2001; Rodriguez et al., 1999; Lachaux et al., 1999; Tass et
al., 1998; Rosenblum and Kurths, 1998; Rosenblum and
Pikovsky, 2001).

In the second area, the main development is the transition
from sensor-based measures to source-based mapping of
oscillatory activity (Gross et al., 2002, 2001; Jensen and
Vanni, 2002; Brovelli et al., 2002; Singh et al., 2002; Tan-
iguchi et al., 2000) and coupling (Gross et al., 2002, 2001).
In contrast to the classical model of pointlike sources (mul-
tidipole model) we use tomographic maps of oscillatory power
or coherence. These raw functional maps can be subjected to
further statistical analysis. The tomographic maps can be spa-
tially normalized into a common anatomical frame and may be
displayed similar to results of fMRI or PET studies.
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In this paper, we present a new technique for evaluating
the spatial resolution of tomographic maps obtained by
spatial filtering (van Veen et al., 1997; Gross et al., 2001;
Sekihara and Scholz, 1996; Robinson and Vrba, 1997). A
proper characterization of these tomographic maps is of
high interest and relevance because they have a nonuniform
spatial resolution depending on the data and on the location
in the brain. An efficient and reliable assessment of the
maps’ properties is important for their statistical evaluation
and scientific interpretation.

The original work presented here is related to the concept
of the point spread function (PSF) and the resolution matrix
(de Peralta-Menendez et al., 1997; Babiloni et al., 2001; Liu
et al., 2002; Lutkenhoner and de Peralta-Menendez, 1997;
Dale et al., 2000). In contrast to the numerical computations
performed in the previous work, we use an analytic estimate
of the resolution of tomographic maps and a bootstrap
approach for the computation of a confidence volume for
the location of local maxima.

The topology of data space

The coordinate system used in this paper is defined in the
following way. A line connecting the left and right periau-

ricular points defines the x axis. The y axis is perpendicular
to the x axis and points to the nasion. The z axis is the
normal vector to the plane spanned by the x and y axis.

All computations were performed using the sensor con-
figuration of the Neuromag-122 system (Ahonen et al.,
1993). The positions of the 122 planar gradiometers with
respect to the subjects head were taken from a real experi-
ment (see Fig. 1).

Let us first define the source space Q as the space of all
possible current density distributions J in the human brain.
For the sake of clarity the time-dependence of J is not
explicitly noted in the following equations. We further de-
fine the data space D as the space of all possible measure-
ments m. Using an MEG system with N sensors results in D
being a subspace of RN. Performing a measurement corre-
sponds to the application of an operator � to J which leads
to the measured data m

m � �J. (1)

� is the Leadfield operator which is defined as

�J�r�� � �
G

L�r,r��J�r��d3r�, (2)

where the integration is performed over the entire brain G.
L(r,r�) is the leadfield

Li�r�,r0� � �
j

�j �
Fj

B�r�j ,r0,ei� · njd
2r�j . (3)

In Eq. (3) B(r�j ,r0,ei) is the magnetic field at r�j due to a
dipolar source at r0 with orientation ei. ei is a unit vector in

Fig. 1. Sensor position. The sensor positions of the Neuromag-122 system
are shown as colored dots with respect to the subjects anatomical magnetic
resonance image.

Fig. 2. Leadfield of a sensor. (A) The absolute value of the leadfield of a single sensor is shown overlayed on a coronal MRI slice. (B) The sum of the absolute
values of the leadfields of all sensors is color-coded at each point in six axial slices of an anatomical MR image. The head position relative to the sensors
was taken from a real experiment.
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direction x, y, z of the Cartesian coordinate system. j is the
index of the MEG coils and �j is the winding direction of
coil j. Integration is performed over the coil surface Fj with
the corresponding normal vector nj.

The solution of the forward problem for a given current
density distribution J can then be written as

m�r� � �
G

L�r,r��J�r��d3r� , (4)

The leadfield describes the sensitivity of the MEG sys-
tem to a source with a given orientation at a given point in
the brain.

The properties of the leadfields determine the topology
of data space. A proper characterization of this topology is
important for the interpretation of results and has to be taken
into account for statistical assessment of significances.
Well-known features of MEG recordings are the insensitiv-
ity to radial sources and a decreased sensitivity with increas-
ing distance from the sensors. These features can be directly
related to properties of the leadfield. If a current density
distribution consists only of radial sources, the integration
in Eq (4) yields zero for a spherical volume conductor
model because there is no overlap between L(r,r�) and J.
The sensitivity of a single sensor is displayed in Fig. 2A.
The decrease of sensitivity with increasing distance from
the sensor can be clearly seen.

Fig. 2B shows the sum of the norm of the leadfields of all
sensors, on six axial slices. The color thus corresponds to
the overall magnitude of a response that a point source with
unit strength elicits in the sensor array and represents a
measure of sensitivity to a given anatomical area. The figure
underlines the well-known fact that the sensitivity decreases

Fig. 3. Lorentzian profile of a power peak. The power estimate of the
LCMV filter is plotted along the y axis (marked with �) for three different
SNR (10, 20, and 30 dB). The source is at y � 0. The red line represents
the Lorentzian profile fitted to the power values.

Fig. 4. Map of FWHM. (A) The FWHM (in mm) at SNR 20 dB is color-coded and overlaid on axial anatomical MRI slices. (B) The ratio of power to noise
is color-coded and overlaid on axial anatomical MRI slices. (C) The FWHM (in mm) at SNR 20 dB is color-coded and overlaid on axial anatomical MRI
slices. Now the power at each voxel is taken into account. Colors were clipped to a maximum of 8 mm to reveal more relevant details. L, R mark the left
and right hemisphere, respectively.
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with the distance to the sensors. Sensors are most sensitive
to cortical areas.

The spatial profile of DICS

We have recently developed a technique, DICS (dynamic
imaging of coherent sources), for the tomographic mapping
of power and coherence in the entire brain (Gross et al.,
2001). DICS uses a linear transformation which belongs to
the general category of linearly constrained minimum vari-
ance (LCMV) beamformer (van Veen et al., 1997). The
results presented here can be directly applied to all LCMV
beamformers in the time or frequency domain. The trans-
formation is obtained by minimizing the variance of the
spatial filter output with the constraint that the activity in a
specific frequency band of the source at position r passes
with unit gain. The mathematical formulation is

min����AD�2� � ��A�2	 subject to AL�r� � I, (5)

where �{ · } denotes the expectation value and the matrix D
contains the Fourier transformed data. I is the unit matrix
and � is the regularization parameter. The solution is

A�r, f � � �LT�r�Cr� f �
1L�r��
1LT�r�Cr� f �
1,

(6)

with Cr(f) � C(f) � �I, where C(f) is the cross spectral
density matrix at frequency f or averaged across a frequency
band centered at f, and superscript T indicates the matrix
transpose. The variance of the estimated activity at a given
point r is (AD)(AD)T which leads to the following simple
expression for the power P

P�r, f � � �LT�r�Cr� f �
1 L�r�	
1 . (7)

This expression can be employed for all points of a
regular 3D grid covering the entire brain leading to a tomo-
graphic map of power at frequency f.

We will now show that we can write Eq (7) in a form that
allows the simple extraction of the full width at half max-
imum (FWHM) of the point spread function (PSF). This is
achieved by, first, decomposing C into separate matrices for
the signal and the noise space and, second, by a polynomial
expansion of the spatial change of leadfields.

It is evident from Eq. (7) that the properties of the
tomographic map depend on the leadfields and on C (and
thus on the data). The symmetric matrix C can be decom-
posed by singular value decomposition

C � USUT (8)

where S is a diagonal matrix of eigenvalues and U contains
orthogonal vectors. The inverse of C can be written as

C
1 � US
1UT � �
i�1

N

Si,i

1Ui

TUi

� S1,1

1U1

TU1 � S2,2

1 U2

TU2 � . . . . (9)

The last term represents a sum of weighted orthogonal
projection matrices. True source locations correspond to
projections with large eigenvalues. If r corresponds to the
position of the only source and we insert the expansion of C
in Eq (7) we obtain

P�r, f � � �S1,1

1LT�r�U1

TU1L�r�

� S2,2

1L�r�T�I � U1

TU1�L�r�]
1. (10)

Again, U1
TU1 in the first addend is a projection matrix on

the vector U1 (which represents the source) and (I 
 U1
TU1)

in the second addend is the complement space. Here, we use
S2,2


1 in the second addend due to the fact that the noise space
has a flat eigenvalue spectrum.1

A closer examination of Eq. (10) reveals valuable infor-
mation about the resolution and structure of power maps. At
the true source location, L is in the space described by the
projection matrix U1

TU1. The second addend is zero because
there is (in the ideal case) no component of L in the
complement space of U1

TU1. By moving away from the
source, L has more components in noise space which are
suppressed due to the small eigenvalues. Consequently, we
expect a peak at the true source location and a decrease in
power with increasing distance to the true source. The rate
of decrease depends on the signal-to-noise (SNR) ratio
(which is reflected in the eigenvalues in S) and the spatial
change of L. The higher the SNR, the larger is the separa-
tion between signal and noise eigenvalues which leads to a
more focal representation of the source in the power map.
Similarly we get a more focal representation of the source if
the leadfields show a large change while moving away from
the source. The sharpness of the representation of a point
source (the point spread function PSF) can be quantified
with the full width at half maximum (FWHM) of the peak.
The FWHM is related to the ability to separate two activa-
tions.

From Eq. (10) we can derive a simple expression for this
dependence of P on the change in leadfields and the SNR of
the data

P�r,f � � �S1,1

1LT�r0�L�r�

� S2,2

1�I � LT�r0�L�r��]
1, (11)

where r0 corresponds to the true source location. We obtain
the following expression

P �
S1,1

RL�r0,r� �
S1,1

S2,2
�1 � RL�r0,r��

, (12)

1 Equation (10) can be easily modified for the case of M sources.
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where RL(r0,r) � LT(r0)L(r) is the leadfield correlation
between points r0 and r.

Fig. 3 shows a comparison of the power computed using
the classical Eq. (7) (marked with plus symbols) and by
using Eq. (12) (solid red line). The source was placed at
(0,0,0.084; coordinates in m) pointing in x direction. A
measurement with 10,000 samples was simulated. The
source was activated with white noise bandpass-filtered
between 11 and 13 Hz. White noise was added to the signal
resulting in a SNR of 10, 20, or 30 dB, respectively (based
on the ratio of the largest singular values of signal and
noise). As expected from the equations, both approaches
yield identical results in this situation.

The remaining problem is the computation of the
FWHM. It can be easily obtained by recognizing that the
PSF of a source has a Lorentzian profile as we will show in
the following derivation.

We start from the fact that the leadfield correlation RL in
Eq (12) is 1 for r0 � r and decreases slowly with increasing
distance between the points r0 and r. The smooth decrease
can be approximated by a polynomial series expansion
using only the first two nonzero terms

RL � 1 � �r � r0

a � 2

. (13)

a quantifies the decrease of the leadfield correlation. Now
we use this approximation in Eq. (12) which results in

P �
S1,1

�r � r0

a � 2�S1,1

S2,2
� 1� � 1

. (14)

Equation (14) can already be identified as a Lorentzian
profile with amplitude A and FWHM w as

A � S1,1 and w2 �
a2

4�S1,1

S2,2
� 1� . (15)

Simulations

Simulations have been carried out to evaluate the validity
of the approximation in Eq (13). To this end, activations
were simulated at 10,000 random locations in the entire
brain. A tangential orientation with respect to a spherical
volume conductor model was assigned to the source. A line
in y direction passing through the source was constructed.
(The orientation of the line did not significantly change the
main results presented here.) The PSF of the source was
computed along this line with a spatial resolution of 0.15
mm. The simulations were carried out with a SNR of 10, 20,
and 30 dB and using 32, 62, and all 122 channels of the
Neuromag-122 system. All the simulations were computed
twice. First, with a single source and, second, with five
additional sources that were randomly placed in the brain.

The five interfering sources were simulated with the same
activation strength as the target source. The FWHM was
computed using the approximation in Eq (13) and directly
from the computed PSF. All computations were initially
performed using a realistic head model (BEM). The line
used to compute the PSF often extended outside the brain
for cortical areas which leads to distorted results especially
when using the BEM. To minimize this effect, a spherical
head model was used for cortical areas. This problem dem-
onstrates the advantage of using the local approximation,
especially under conditions where it is difficult to obtain a
meaningful PSF.

The results of the simulations are summarized in Table 1.
The rows correspond to different SNRs and the columns
correspond to different numbers of sensors used for the
simulation. The left part of the table is based on simulations
with a single source. The right part of the table describes
results from simulations with five interfering sources. Each
field summarizes the results in the following format: mean
FWHM (in mm) computed from the PSF/mean relative
error of the FWHM in percent. It is evident that both an
increase in the SNR and the number of channels reduce the
FWHM and the relative error of the FWHM estimation. The
increase of the relative error at 30 dB and 122 sensors is due
to the discrete spatial sampling (with 0.15 mm resolution).
Because the FHWM is smallest under these conditions, the
relative error is dominated by errors introduced by the
spatial sampling.

Mapping the spatial resolution of DICS

We now use this approximation to estimate the FWHM
of the DICS filter at any given point in the brain under the
assumption that there is a point source with a given SNR.
This is done by computing the leadfield correlation of any
voxel to the neighboring voxel. This allows the use of Eq
(15) to compute FWHM w. In Fig. 4A, the mapping of
FWHM in millimeters on anatomical MRI slices is shown.

Table 1
Summary of the results of the simulations

SNR Without additional sources With five additional sources

32 62 122 32 62 122

10 28.8/10.8 25.4/8.0 21.1/5.4 33.5/14.6 33.0/11.8 30.6/8.5
20 11.1/3.4 8.0/2.4 6.6/1.7 11.4/5.3 10.6/9.8 10.0/3.3
30 3.4/2.6 2.5/2.4 2.1/2.8 3.7/3.2 3.4/10.5 3.2/2.8

Note. All combinations of SNR (10, 20, 30) and number of sensors (32,
62, 122) were computed and are presented in the table. The left part of the
table is based on simulations with a single source. The right part of the
table describes results from simulations where five additional sources were
randomly placed inside the brain. Each field contains two numbers. The
first is the mean FWHM (in mm) computed from the PSF. The second
number is the mean relative error (in percent) (100*(FWHM1 
 FWHM2)/
(FWHM2)) of the FWHM computed from the approximation (FWHM1)
and directly from the PSF (FWHM2).
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Equation (15) was used with 20 dB SNR. The axial slices
show that the FWHM of the PSF increases for subcortical
areas. The slices describe the properties of the functional
map independent of the data. This information is useful for
assessing the performance of the spatial filter for a given
measurement configuration (a given position of the head
relative to a specific sensor array).

Once the measurement is performed, the FWHM of the
PSF can be computed with Eq (15) using an estimate of the
SNR for each voxel in the brain. This estimate is obtained
from Eq (7) and is demonstrated in Fig. 4B. Five min of
recording were obtained from a subject who was resting
with his eyes open. The generators of spontaneous activity
were localized in the 7–13 Hz frequency range correspond-
ing to the alpha-rhythm and the low-frequency component
of the mu rhythm. The tomographic power map was used
for the estimation of the FWHM of the PSF. The power
maxima in bilateral sensorimotor areas (more pronounced
on the right side) and occipital areas (Fig. 4B) lead to a
reduction of the FWHM (Fig. 4C), indicating the enhanced
resolution of the spatial filter for these areas.

Confidence volumes for maxima in functional maps
created with spatial filter

In the previous section, we have derived an expression
which allows the computation of the FWHM of the PSF of
a neural generator at a given point. This measure quantifies
the data-dependent spatial resolution of the functional maps.
A second essential measure which complements the FWHM
is the confidence volume for the location of a local maxi-
mum in the functional map. The 95% confidence volume
contains the true source location with 95% probability. This
measure quantifies the uncertainty of the localization and is
an important parameter for the process of assigning a local
maximum to an anatomic area and for evaluating differ-
ences in localization.

We suggest the use of bootstrapping (Efron, 1979; Zou-
bir and Boashash, 1998) for the computation of a confidence
volume. The bootstrap method does not require assumptions
on the distribution of the data for which a confidence vol-
ume is needed.

The computation is performed in the following way. The
raw data is split into N nonoverlapping segments which
have a length appropriate for a subsequent fast fourier
transform (FFT) (e.g., 1024 samples). The cross spectral
density Ci of all channel combinations is computed sepa-
rately for each segment i. N matrices are randomly drawn
from this whole population (with replacement), averaged,
and used in the localization procedure [e.g., Eq (7) for a
power map]. The random drawing and subsequent localiza-
tion is repeated a large number of times resulting in a
distribution of local maxima. This distribution can be di-
rectly presented as a probability map (Fig. 5) or it can be
used for the estimation of a confidence volume. In the latter
case, a sphere around the most likely source location can be
constructed that contains 95% (or 99%) of the local max-
ima. The radius of the sphere is a measure for the uncer-
tainty of localization. It should be noted that more complex
confidence volumes may be used. If the source has a pre-
ferred orientation (as is often the case), we can distinguish
mainly two independent orientations (parallel and perpen-
dicular to the source orientation). The resulting confidence
volume has an ellipsoidal form represented by two indepen-
dent radii.

The suggested procedure is demonstrated for the data
used in Fig. 4C. The 300 segments of data were subjected to
the bootstrap analysis resulting in a probability distribution
of the source in the right sensorimotor cortex (Fig. 5). A
grid size of 1 mm was used and the random drawing was
repeated 10,000 times. In addition, the effect of the record-
ing time was investigated. The probability map was com-
puted for 30, 60, 120, 180, and 300 randomly drawn seg-
ments corresponding to 30, 60, 120, 180, and 300 s of
recorded data, respectively.

Table 2 shows the radius of the 95% and the 99%
confidence sphere in millimeters. Extending the recording
time leads to a marked reduction of the radius of the con-
fidence sphere.

Fig. 5. Probability map of source localization. The distribution of the
localization of right sensorimotor source from Fig. 4C has been obtained
with the bootstrap method. The 7–13 Hz component of the mu-rhythm was
localized 10,000 times. The distribution of the peak location was normal-
ized to represent the probability that the local maximum occurs in a certain
voxel. The probability map was thresholded at the 10% level.

Table 2
Summary of the results of the bootstrap procedure

Length (s) 95% (mm) 99% (mm)

30 8.5 11.9
60 3.5 4.9

120 1.8 2.3
180 1.5 2.1
300 1.5 1.5

Note. For different length of recording time, the radius of the 95% and
the 99% confidence sphere is listed in mm. The confidence sphere is
defined as the sphere containing 95% (or 99%) of the local maxima.
Extending the recording time leads to a marked reduction of the radius of
the confidence sphere.
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Discussion

We present two measures for the characterization of
functional tomographic maps obtained by spatial filtering:
first, the FWHM of the point spread function (PSF) and,
second, a confidence volume for the location of local max-
ima. The FWHM has been used before to quantify the
resolution of functional maps (de Peralta-Menendez et al.,
1997; Babiloni et al., 2001; Liu et al., 2002; Lutkenhoner
and de Peralta-Menendez, 1997; Dale et al., 2000). In these
studies, the FWHM was computed numerically from simu-
lated data in the following way: A dipole was placed at a
certain location. The dipole strength was chosen to obtain a
specific SNR. The forward problem was solved and the
given algorithm was applied to the simulated data resulting
in a distributed representation of the pointlike source. The
distance from the peak at which the peak strength was
reduced by 50% was used as FWHM.

In contrast, we derived an analytic expression for the
FWHM. This expression directly shows that the FWHM
depends on the SNR and the leadfield correlation and allows
a considerably easier use. Specifically, power maps ob-
tained from real data can be used to estimate the FWHM.
The simulations demonstrate the reliability and robustness
of the proposed technique.

The ability to estimate the FWHM is also important for
an appropriate choice of the grid spacing. If the smallest
FWHM is considerably smaller than the grid spacing, it is
more likely that a sharp representation of a source might not
be detected if it happens to be located between two grid
points. One could imagine a nonisotropic map where the
grid spacing is adapted to the local FWHM. For a fast
scanning, the grid spacing could be set to a large value (e.g.,
8 mm) and the FWHM may be enhanced by increasing the
regularization � trading this with a resolution reduction.

The computation of a confidence volume is of crucial
relevance for the assessment and interpretation of tomo-
graphic maps. It is necessary for a reliable and objective
assignment of local maxima to anatomic areas and indis-
pensable for the identification of differences in localization
between different experimental conditions. Two localiza-
tions may be regarded as significantly different if their 95%
confidence volumes do not overlap.

The suggested bootstrap method is well established and
is used in numerously different areas (including signal pro-
cessing (Zoubir and Boashash, 1998)) for statistical assess-
ment of data with unknown distributions.

It should be noted that the bootstrap method cannot
quantify the “correctness” of the localization but only the
uncertainty of the localization (using a specific algorithm)
given the variability in the raw data. In addition, the com-
putation of the confidence volume is time consuming be-
cause the localization procedure has to be performed many
times. Furthermore, the grid size has to be adjusted in order
to resolve differences in the location of the local maximum.

In conclusion, we present methods for assessing proper-

ties of functional tomographic maps obtained with spatial
filtering techniques like DICS. These methodological ad-
vances represent a new step toward a unified framework for
the statistical evaluation of MEG/EEG tomographic maps.
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