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Functional connectivity between cortical areas may appear as
correlated time behavior of neural activity. It has been suggested
that merging of separate features into a single percept (‘‘binding’’)
is associated with coherent gamma band activity across the cortical
areas involved. Therefore, it would be of utmost interest to image
cortico-cortical coherence in the working human brain. The fre-
quency specificity and transient nature of these interactions re-
quires time-sensitive tools such as magneto- or electroencepha-
lography (MEGyEEG). Coherence between signals of sensors
covering different scalp areas is commonly taken as a measure of
functional coupling. However, this approach provides vague in-
formation on the actual cortical areas involved, owing to the
complex relation between the active brain areas and the sensor
recordings. We propose a solution to the crucial issue of proceed-
ing beyond the MEG sensor level to estimate coherences between
cortical areas. Dynamic imaging of coherent sources (DICS) uses a
spatial filter to localize coherent brain regions and provides the
time courses of their activity. Reference points for the computation
of neural coupling may be based on brain areas of maximum power
or other physiologically meaningful information, or they may be
estimated starting from sensor coherences. The performance of
DICS is evaluated with simulated data and illustrated with record-
ings of spontaneous activity in a healthy subject and a parkinso-
nian patient. Methods for estimating functional connectivities
between brain areas will facilitate characterization of cortical
networks involved in sensory, motor, or cognitive tasks and will
allow investigation of pathological connectivities in neurological
disorders.
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The hypothesis that relevant information in the brain is coded
by accurate timing of neuronal discharges has received strong

support from recent reports of synchronization of neuronal firing
within and across areas of the cat visual cortex (1). The syn-
chronization of neural activity, which was modulated by gamma-
band oscillations, was shown to depend on stimulus properties
like continuity, vicinity, and common motion, and on receptive
field constellations (for review, see ref. 2). This and similar
findings seem to support the concept that synchronized rhythmic
neural firing has a role in solving the binding problem, i.e., the
integration of distributed information into a unified represen-
tation (1–4).

To investigate cortico-cortical synchrony noninvasively in the
human brain, new analysis tools must be developed. In functional
magnetic resonance imaging (fMRI) studies, structural equation
models have been used to estimate connectivities between brain
areas (5, 6). Although this is a very promising approach, it lacks
the temporal resolution required to measure oscillatory activity
and to observe the expected transient formation of neuronal
assemblies (7).

Magnetoencephalography (MEG) and electroencephalogra-
phy (EEG) have the necessary millisecond resolution to char-

acterize neuronal coupling. Indeed, task-dependent interactions
in the frequency domain have been reported between signals
recorded by different MEG sensors or EEG electrodes during
cognitive (8–12) and motor tasks (13–15). However, these
findings are limited to correlations within the measurement
device and reveal little on the synchrony between specific
cortical areas.

The signal recorded by a MEG sensor or an EEG electrode
cannot be directly attributed to the underlying cortical region.
The complex relationship between the signal detected by a
sensor and an activated brain area is given by the solution of the
forward problem (i.e., the calculation of the magnetic field or
electric potential generated by a point source). Especially elec-
tric potentials (EEG) are smeared out because of the inhomo-
geneous conductivity structure of the human head. The activity
of even a small cortical area is recorded by several sensors,
leading to severe spreading in sensor-based measures. The
spreading is particularly problematic when describing interde-
pendencies between signals (16–18).

Here, we present an analysis method, dynamic imaging of
coherent sources (DICS), that allows studies of cortico-cortical
and cortico-muscular interactions by imaging power and coher-
ence estimates within the human brain.

Methods
We employ the cross spectral density matrix as the basic repre-
sentation of the oscillatory components and their dependencies
in MEGyEEG and electromyographic (EMG) signals. In this
paper, DICS was applied to MEG data although it can be applied
to EEG as well. In the first step, which is identification of the
interacting brain areas, we restrict the analysis to linear depen-
dencies. In the next step, the time course for each region of
interest is estimated and can be subjected to a more complex
(and possibly nonlinear) analysis.

The complex cross spectral density C for signals x(t) and y(t)
is computed by using Welch’s method of spectral density esti-
mation (19). A Hanning window is applied to the segments of
signals x(t) and y(t). The Fourier-transformed X( f ) and Y( f ) are
used to compute the cross spectral density, C( f ) 5 X( f )Y*( f ),
where Y* denotes the complex conjugate of Y. Finally, C is
averaged over successive data segments, which are overlapping
by half their segment length.

One element Ci,j of the cross spectral matrix consists of the
cross spectral densities of signals i and j. Therefore, C contains
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the cross spectral densities of all combinations of MEG (and
possibly EMG) signals.

Two measures are derived from this matrix. First, the power
spectrum of the signal i is represented by the diagonal element
Ci,i. It allows identification of frequency bands containing most
of the power or those showing task-dependent changes. Second,
coherence is the magnitude-squared cross spectrum divided by
the power spectra of both time series, viz.

Mi,j~f! 5
uCi,j~f!u2

Ci,i~f!Cj,j~f!
. [1]

Coherence is bounded between 0 and 1, where Mi,j( f ) 5 1
indicates a perfect linear relation between i and j at frequency
f. It is commonly taken as a measure that quantifies the
functional coupling between cortical areas (16, 20) based on
signals from sensors covering different brain areas. These mea-
sures are used to quantify oscillatory components and their
interactions in the recorded data.

We propose the use of a linear transformation that acts as a
spatial filter (21–24) to compute these measures at any given
location in the brain. The method, which is described in detail in
the Appendix, represents a linear transformation where the
transformation matrix is designed according to the solution of a
constrained optimization problem.

In principle, a three-dimensional grid covering the entire brain
is defined and two measures are computed at each grid point:
first, the estimated power and, second, the estimated coherence
with respect to a given reference point. Appropriate strategies
for the selection of the reference point are introduced and
illustrated in Results. Both measures are derived from the cross
spectral density averaged over the frequency range of interest
and the solution of the forward problem for the respective grid
point.

One of the two measures is then thresholded and displayed
together with the individual magnetic resonance images (MRI)
(see e.g., Fig. 1). To assess the statistical significance of these
measures, power is displayed as a power statistical parametric
map (pSPM, see Appendix), and the 99% confidence level is
computed for the coherence (25).

Once coherent brain areas are identified, the time course of
their activity is estimated by the spatial filter described in ref. 24.
Phase and amplitude information is separated by means of the
Hilbert transform (26). The degree of phase coupling between
two time series is quantified by the synchronization index r (27).
The dynamics of phase synchronization r and mean amplitude
are calculated in a window moving across the data.

Results
We will first demonstrate the efficiency of DICS in identifying
the sources of simulated cortical rhythms and their interactions.
The effect of the signal-to-noise ratio (SNR) and the level of
coherence on the performance of DICS is specifically investi-
gated in the Appendix. We then proceed to test the method in
localizing sources of spontaneous cortical rhythms in a healthy,
resting human brain. Finally, signals measured from a parkin-
sonian patient during the tremor phase are analyzed to illustrate
the various approaches for evaluating cortico-muscular and
cortico-cortical interactions using DICS. The Neuromag-122
(Helsinki, Finland) whole-head MEG system was used for all
simulations and measurements.

Simulated Data. Four source areas of cortical rhythms were
simulated, as illustrated in Fig. 1 A, to imitate the physiological
distribution of spontaneous oscillatory brain activity (28–32).
The activity of sources in the parieto-occipital sulcus (Fig. 1 Aa)
and in the calcarine fissure (Fig. 1 Ab) consisted of activity in the
10-Hz frequency range (parieto-occipital sulcus 8 Hz, calcarine

fissure 12 Hz). The signals generated in the sensorimotor hand
areas (Fig. 1 Ac) in both hemispheres were composed of 10-Hz
and 22-Hz oscillations. The hand area oscillations had a coher-
ence of 0.25 at 10 Hz but no significant coherence at 22 Hz.

To test the performance of DICS for spatially close source
areas in the presence of multiple independent coherences, two
premotor sources were added (Fig. 1 Ad), which were activated
at 18 Hz with a coherence of 0.28. The shortest distances
between the sources were 1.8 cm (left hand area to left premotor
area), 2.1 cm (right hand area to right premotor area), and 3.0
cm (left to right premotor area).

All time series were obtained by filtering white noise with a
narrow band-pass filter at the desired frequencies (center fre-
quency 6 0.5 Hz). A recording time of 100 s was simulated with
a sampling rate of 100 Hz. White noise with a maximum
amplitude of 30% of the maximum signal was added. Coherence
was generated by using the same band-pass filtered noise as a
part of both time series. Only the two above-mentioned coher-
ences were significant between any pair of the time series. Power
and coherence were computed with a standard grid spacing of 8
mm and interpolated to the MRI resolution of 1 mm. As
illustrated by the pSPM representations in Fig. 1B, all of the
source areas were separately detected by DICS, including the
closely located motor and premotor sources. The error in
estimating source location and orientation was below 1.5 mm and
4° for all sources. The simulated coherences between the hand
sensorimotor areas and between the premotor areas were accu-
rately identified (Fig. 1C), and no false coherences were
detected.

Localization of Cortical Oscillatory Activity. Correct localization of
sources of oscillatory activity is a critical measure of the DICS
approach because it tests performance of both the cross spectral
density matrix and the spatial filter. Here, we estimated the

Fig. 1. Simulations. (A) Locations of simulated sources are indicated as red
dots on coronal (a and b) and axial (c and d) MR images. (B) pSPMs calculated
in the frequency bands 7–9 Hz (a), 11–13 Hz (b), 20–24 Hz (c), and 17–19 Hz (d).
The threshold for the pSPMs corresponds to P , 0.001. (C) Coherence estimates
are shown with a threshold of 0.23 in the frequency bands 9–11 Hz (a) and
17–19 Hz (b). The reference point in a was the left hand area, as estimated from
the pSPM, and in b the left premotor area. Coherence of the reference region
with itself is always equal to 1. The white arrows indicate the dominant
direction of current flow.
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generators of spontaneous brain activity from a 5-min recording
of a healthy subject, when he was resting with his eyes open. Fig.
2 displays the pSPMs overlayed on the subject’s MR images for
the frequency bands 7–12 Hz (Fig. 2 A) and 17–23 Hz (Fig. 2B),
covering the main peaks of the power spectrum. The results are
consistent with the previously reported generators of spontane-
ous oscillatory activity, as recorded by using whole-head MEG
(32). The occipital cortex has been reported to be involved in the
generation of the 10-Hz ‘‘alpha’’ rhythm, whereas the ‘‘mu’’
rhythm containing both 10-Hz and 20-Hz components is known
to originate from the vicinity of the hand area in the left and right
primary sensorimotor cortex.

Localization and Dynamics of Cortico-Cortical and Cortico-Muscular
Coupling in Physiological Data. Because DICS computes coherence
to a reference region in the entire brain, the task of identifying
a network of coherent brain regions reduces to the problem of
detecting at least one member of such a network. In principle, it
is possible to test all pairs of grid points for significant coherence,
but it is very demanding in computation time. We propose four
approaches for selecting reference regions in the brain.

The first strategy is to employ a peripheral signal (e.g., EMG)
recorded simultaneously with MEG as the initial reference. A
possible peripheral-cortical coupling may thus be identified, and
the cortical area showing strongest coherence with the periph-
eral signal may be chosen as the reference region for further
calculations.

In the second strategy, a reference region is defined from the
source area of strongest oscillatory activity, i.e., from peaks in
the pSPM maps (cf. Fig. 2).

In the third strategy, the most general one, coherences are first
calculated between all sensor pairs. The strongest coherence
between nonadjacent sensors is selected. A cortical reference
region in the neighborhood of one of these sensors is found by
the spatial filter approach. A selected reference region can be
tested for significant coherence against all points on a grid
covering the entire brain.

The fourth strategy uses physiological a priori information to
define a reference region. Hypotheses may be tested by selecting
reference regions based on knowledge of anatomical structures
or pathways or from results of other functional imaging studies.

In the following, we will illustrate these strategies in a patient
with idiopathic Parkinson’s disease (male, 36 yr), presenting with
a predominantly right-sided resting tremor of about 5 Hz at the
upper extremity. Spontaneous cortical activity with the subject
resting, eyes open, was recorded for 5 min. About 1 min after the
beginning of the measurement, the strength of the tremor
increased spontaneously, as confirmed by the simultaneously
recorded surface EMG from the right flexor digitorum super-
ficialis muscle (FDS).

Strategy 1: Peripheral signals as a reference signal. Because an
EMG recording was available, the first strategy was applicable.
The strongest components in the power spectrum of the EMG
were found at 4–6 Hz and at 9–12 Hz. By imaging the cortico-
muscular coherence in the 9- to 12-Hz band, we identified the
contralateral primary motor cortex (M1) as the area showing
highest coherence (Fig. 3A Upper). The step from sensor-based
coherence (dashed line in Fig. 3A Lower) to source-based
coherence (full line in Fig. 3A Lower) resulted in an increase of
27%, indicating a considerably improved representation of cor-
tical activation by estimating source activity instead of by using
sensor recordings.

Strategy 2: Maximum of the pSPM. The pSPM in the 9- to 12-Hz
frequency range was computed to identify the area in the brain
with the strongest power. The peak of the pSPM (Fig. 3B Upper)
is in the same location as the maximum of cortico-muscular
coherence (Fig. 3A Upper) and leads to the selection of the same
reference region. The right M1 area also showed oscillatory
activity (Fig. 3B Upper) that, however, was not coherent with the
EMG signal of the right FDS muscle. The amplitude of the left
M1 activity in the 9- to 12-Hz band exhibits a marked increase
at the time of increased tremor strength at about 60 s (Fig. 3B
Lower).

Strategy 3: Sensor-based search. The most general approach for
the definition of a reference region is based on coherences
between all sensor pairs. This approach is ideal for planar
gradiometers, which detect the strongest signal directly above an
activated cortical area. When a coherent sensor pair has been
determined (Fig. 3C Left), a triangulation of the brain surface is
used to estimate which cortical areas gave rise to the coherence
in the sensor signals. The spatial filter was used for an iterative
search on two cortical patches closest to the selected sensors.
First, the triangulation node closest to one of the selected sensors
(red, Fig. 3C Left) is taken as the reference point, and coherence
is computed to all points in the second cortical patch (Fig. 3C
Right). The point in the second patch showing highest coherence
is now taken as the reference point, and coherence is computed
to all points in the first patch. After the iterations have converged
to two points showing maximum coherence on the brain surface,
the iteration is extended into the brain volume in spherical
regions surrounding the surface points. This approach also led to
the selection of left M1 as a reference region.

Strategy 4: Physiological a priori information. With the fourth
strategy, we identified the hand area of the left primary motor
cortex in the anatomical MRI scan as represented by a knob-like,
V-shaped structure (33). This approach yielded the same refer-
ence region as obtained from strategies 1 to 3.

Studying cortico-cortical interactions. The reference region M1
can now be tested for significant coherence to other brain areas.
The results are illustrated in Fig. 3D, which shows a color coded
representation of cortical coherence to the M1 area in the 9- to
12-Hz band. The coherence of M1 with itself (which is equal to
one by definition) accounts for most of the coherence. Never-
theless, a second well separated premotor area (PM) shows
significant coherence to M1.

The time courses of M1 and PM were calculated by using a
spatial filter. Fig. 3D (Upper Right) illustrates that the coherence
between M1 and PM is largely restricted to the 9- to 12-Hz band.
Both time series were also subjected to a synchronization
analysis. The synchronization index r was calculated in 10-s
windows with 5-s overlap. Phase synchronization between M1
and PM increases at the time of enhanced tremor activity (Fig.
3D Lower Right).

The delay between M1 and PM activity in the 9- to 12-Hz band
was computed at the times of strongest phase synchronization
(for a detailed description of the method, see ref. 34). In this
particular case, the delay was 0 ms (standard deviation 5 ms),
which suggests a zero lag interaction between M1 and PM or a

Fig. 2. Localization of the generators of spontaneous activity recorded from
a healthy subject at rest with his eyes open. The strongest pSPMs in the (A) 7-
to 12-Hz band and (B) 17- to 23-Hz band are shown, overlayed on axial
anatomical MRI slices (P , 0.0001). The color bar defines the relation between
color and noise-normalized power.
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common pacemaker. In contrast, directional information flow
was evident in the cortico-muscular coupling where M1 activity
preceded EMG by 16 ms (standard deviation 3 ms), in agreement

with cortico-muscular conduction times to forearm muscles as
determined in transcranial stimulation studies (35).

Discussion
We present a method, dynamic imaging of coherent sources or
DICS, for the localization of oscillatory brain activity and the
identification of coherent brain areas using a frequency domain
implementation of a spatial filter. It can be used for imaging the
spatial distribution of power and coherence in chosen frequency
bands. It is especially suited for analyzing oscillatory components
in continuously recorded electromagnetic signals.

We have used a two-step procedure. First, we identify the
coherent brain areas. Second, we analyze the time courses of
their activity. The first step requires the selection of a reference
region by one of four strategies, which are based on (i) a
peripheral signal, (ii) maximum power, (iii) the coherence
between sensors, or (iv) physiological a priori information. A
number of reference regions can then be tested for significant
coherence to other brain areas. The four approaches are com-
plementary and may each lead to the detection of different
interacting areas. For example, a weak but significant coherence
between brain areas may lead to a nonsignificant sensor coher-
ence and to failure of strategy 3. It may, however, be identified
by a correct a priori choice of the reference region (strategy 4).
On the other hand, by choosing the reference region according
to the strongest oscillatory brain areas (strategy 2), one could
miss regions that are highly coherent but have low power. These
regions could be detected by strategy 3.

Locations of neuronal populations generating oscillatory ac-
tivity have been previously estimated and their time behavior
investigated by various methods (e.g., refs. 36–39). In contrast,
the main purpose of DICS is the detection of coherent neuronal
populations and characterization of their dynamic interactions.
pSPMs are mainly used as one strategy of choosing a reference
region. Nevertheless, the estimation of pSPMs and coherence is
done conveniently within the same conceptual and methodolog-
ical framework.

The time course of activity in the regions of interest is
computed by applying a spatial filter. Because the resulting time
series can be taken as estimates of the activity in a brain region,
the final interpretation of the results is considerably facilitated.
For studying dynamical features of power and neural interactions
in the second step, we used the instantaneous amplitude and the
synchronization index. Both measures are derived from the
Hilbert transform and do not require stationarity of the data
(27). Application of any other nonlinear or linear analysis on the
time courses of the neuronal activations is equally feasible.

Simulations demonstrate the ability of the present algorithm
to accurately estimate the location of coherent brain areas in a
range of SNR and coherence expected in physiological data.
Because DICS is applied to unaveraged data, coherences be-
tween brain areas as high as 0.95 used in the simulations seem
unlikely.

Employing DICS on recordings of spontaneous activity in a
healthy subject and a parkinsonian patient resulted in the
localization of the generators of oscillatory activity and the
characterization of cortico-muscular and cortico-cortical cou-
pling, which are consistent with results of previous studies.

In the healthy subject, pSPM peaks in the 10-Hz and 20-Hz
frequency ranges were in accordance with the locations of the
known generators of the alpha- and mu-rhythm. In the par-
kinsonian patient, we identified the cortical area showing
highest coherence to the FDS muscle. We were able to trace
yet further functional connectivities by taking this area as
reference point for a cortico-cortical coherence analysis. This
approach led to the detection of PM showing coherence to M1.
The synchronization analysis revealed an increase in M1–PM
synchronization at the time of enhanced tremor activity con-

Fig. 3. Analysis of cortico-muscular (CM) and cortico-cortical (CC) coupling.
(A Upper) The spatial distribution of cortical coherence to EMG from the right
FDS muscle, with a threshold of 0.78 in the 9- to 12-Hz frequency band. (Lower)
The strongest coherence between EMG and an MEG sensor above M1 (dashed
line) is compared with the coherence between EMG and M1 itself (full line;
99% confidence level is 0.014). (B Upper) The pSPM in the 9- to 12-Hz band
reveals bilateral hand motor areas (P , 0.0001). (Lower) Amplitude of the left
M1 activity in the 9- to 12-Hz band is shown as a function of time. (C) Plot of
all sensors, flattened onto a plane, with lines connecting the sensors showing
highest coherence in the 9- to 12-Hz band (Left). Only coherences between
sensor pairs with a distance of more than 6 cm are shown. All sensors at shorter
distance to the sensor marked with a red dot are represented by filled circles.
(Right). The coherence estimate on the triangulated brain surface is shown for
the 9- to 12-Hz range. The reference point is marked with a red dot. (D Left)
The spatial distribution of cortico-cortical coherence to M1 is shown with a
threshold of 0.07 in the 9- to 12-Hz band. (Right) A peak at 11 Hz is evident in
the coherence spectrum between M1 and PM (Upper). The synchronization
index r between M1 and PM increases abruptly when tremor strength in-
creases at about 60 s (Lower; 99% confidence level is 0.04).
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sistent with involvement of these areas in parkinsonian resting
tremor (27, 40).

In conclusion, we have introduced an analysis method that
makes it possible to directly study dynamics of coherent brain
areas based on electromagnetic recordings of human brain
activity, and demonstrated its applicability on real data. The
present approach is barely biased by the user or by assumptions
on the source model. Access to identified brain areas instead of
MEG sensors or EEG electrodes will enhance the information
content in studies of cortico-muscular interactions. Most impor-
tantly, cortico-cortical interactions and their time courses can
now be evaluated to address the intriguing questions of percep-
tual binding in the human cortex and, more generally, of
coupling within distributed cortical networks during rest or task
performance in physiological and pathological conditions.

Appendix
Methodological Details of DICS. DICS employs a linear transfor-
mation defined by the matrix A, which, when applied to the
measured data, passes the activity in a specific frequency band
of the sources at position r with unit gain, while suppressing
contributions from all other sources. These characteristics can be
formulated as a minimization problem:

min@%$iADi2% 1 aiAi2# subject to AL~r! 5 I , [2]

where %{} denotes the expectation value and the matrix D
contains the Fourier transformed data. I is the unit matrix, a is
the regularization parameter, and the columns of L(r) contain
the solution of the forward problem for two orthogonal tangen-
tial unit dipoles at r. The constraint ensures that the desired
signal is passed with unit gain. By minimizing the corresponding
Lagrange function, the frequency-dependent solution can be
derived in analogy with ref. 41:

A~r,f! 5 ~LT~r!Cr~f! 2 1L~r!! 2 1LT~r!Cr~f! 2 1 , [3]

with Cr( f ) 5 C( f ) 1 aI, where C( f ) is the cross spectral density
matrix at frequency f or averaged across a frequency band
centered at f, and superscript T indicates the matrix transpose.
The last two terms in Eq. 3 represent a weighting of L(r), with
the inverse of the cross spectral density matrix. The bracket
contains a scaling of the coefficients, which emerges from the
constraint in Eq. 2.

The cross spectrum estimates between the four tangential
source combinations at locations r1 and r2 at frequency f are then
represented by the 2 3 2 matrix

Cs~r1,r2,f! 5 A~r1,f!C~f!A*T~r2,f! . [4]

In the case r1 5 r2, Cs is a 2 3 2 matrix containing the power
estimates

P~r,f! 5 Cs~r,r,f! . [5]

The corresponding equation for the cross spectral density to an
external reference signal can be computed according to

cs~r,f! 5 AT~r,f!cref~f! , [6]

where cref( f) is the cross spectral density between the reference
signal and all MEG signals. From Eq. 5, it is evident that the power
estimate can thus be computed efficiently from the solution of the
forward problem and the cross spectral density matrix.

If the singular values of Cs, l1 .. l2, the cross spectrum can
be attributed to sources with fixed orientations, determined
by the singular vectors corresponding to l1. We can then reduce
the matrices in Eqs. 4 and 5 to scalars by estimating the cross
spectral density along the dominant direction, which leads to the
expression

cs~r1,r2,f! 5 l1$Cs~r1,r2,f!% , [7]

where l1{} indicates the larger singular value of the expression
in braces.

Analogously, the power in the dominant direction is

p~r,f! 5 l1~P~r,f!! , [8]

and we obtain the coherence from Eqs. 7 and 8 as

M~r1,r2,f! 5
ucs~r1,r2,f!u2

p~r1,f!p~r2,f!
. [9]

If l1 .. l2 does not hold, the trace of the 2 3 2 matrix is used
instead of the largest singular value.

To obtain the spatial distribution of the power, p( f ) is
computed on a regular grid covering the entire brain, and,
following the approach of refs. 23 and 24, the ratio of source
power to noise projected by the spatial filter is displayed. The
projected noise is computed in analogy to Eq. 8, where the cross
spectral density matrix is replaced by the noise cross spectral
density matrix. The noise-normalized power is F-distributed,
with degrees of freedom corresponding to the number of values
used for the computation of C. The thresholded image, color-
coded according to noise-normalized power, is referred to as
pSPM (42). Sources are identified from local peaks in the pSPM.
The corresponding orientations are computed from the eigen-
vectors of the matrix Cs.

If a large grid spacing is chosen to ensure fast computation,
sources may be missed or incorrectly estimated if their true
location is too far apart from a grid point. This problem is
avoided by increasing the regularization which leads to a spatially
wider representation of the source.

Time courses are computed for selected regions of interest
with a spatial filter (24) for the dominant orientation and an
orthogonal direction. The spatial resolution is higher for the
narrowband data used for imaging power and coherence than for
broadband data used for the estimation of the time course. The

Fig. 4. Testing the performance of DICS. (A) The SNR of spontaneous activity,
estimated as the ratio of the frobenius norms of the cross spectral density
matrices of data measured from a resting subject (signal) and without a
subject (noise). (B) The pSPM FWHM in millimeters plotted for SNR in the range
1 to 15. (C) The absolute error in the coherence estimation for three different
coherences (0.2, 0.6, and 0.95) is plotted as function of SNR. (D) The depen-
dence of FWHM of coherence on SNR for three different coherence values (0.2,
0.6, 0.95).
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number of sources is usually reduced in narrowband data, which
increases the spatial resolution. For the computation of phase
synchronization, a narrow-band time course is estimated with a
spatial filter of high spatial resolution.

The Dependence of DICS Performance on SNR and on the Level of
Coherence. The performance of spatial filter methods that use the
spatial data covariance matrix degrades in the presence of
correlated sources although correlations of 0.5 seem tolerable
(24). To investigate the performance of DICS under various
conditions, we carried out simulations that revealed, in agree-
ment with ref. 24, that level of coherence and the SNR are
decisive parameters also for DICS.

We define SNR as the ratio of the frobenius norms of the cross
spectral density matrices of signal and noise. A typical SNR
range in physiological data is illustrated in Fig. 4A, with spon-
taneous brain activity in a resting subject (eyes open) as signal
and with recordings without a subject as noise. The peaks
correspond to alpha- and mu-rhythm.

Fig. 4B displays the dependence of the spatial resolution on
SNR. In the simulations, sensor positions and conductivity
model for the head were taken from the measurement of the
parkinsonian patient. The noise data were taken from record-
ings without a subject. Location and orientation of the simulated
point source was taken from the M1 source (Fig. 3). The M1
activity was simulated by using bandpass filtered noise (12 6 0.5
Hz), and the pSPM was computed in the 10- to 14-Hz range along
the line connecting the M1 and PM areas with a resolution of
0.15 mm. The pSPM showed a peak at the true source location.
Note that the number of contiguous grid points where the effect

of a point source can be seen depends on the grid spacing,
threshold level, and amount of regularization applied according
to Eq 3. The width of the peak changes with SNR and is
quantified by the full width at half maximum (FWHM) for the
SNR range from 1 to 15. The curve in Fig. 4B shows a steep
decrease for low SNR (,5) whereas only small improvement is
evident for high SNR beyond about 12.

A further simulation was performed to test the accuracy of the
coherence estimate. Coherence was simulated at 12 Hz between
the M1 and PM area (see Fig. 3D). The angle between source
orientations was 30°. Fig. 4C illustrates the absolute error in the
coherence estimation as a function of SNR for three different
coherences (0.2, 0.6, and 0.95). High coherence results in a larger
absolute error, compared with medium (0.6) and moderate (0.2)
coherence.

Fig. 4D illustrates the effect of SNR on the minimum distance
between sources that can still be separated. Two sources are
defined as separable if there is no overlap in their FWHM ranges
of coherence computed along the line connecting M1 and PM.
The minimum distance required to separate two sources in-
creases sharply for the highest coherence. However, even highly
coherent and spatially close neuronal populations can be iden-
tified when the SNR is high. After estimating the SNR from real
data, simulations can be used to quantify the expected uncer-
tainty of the coherence estimate.

We thank Kimmo Uutela for access to specific software routines.
This work was supported by the Volkswagen-Stiftung (Iy73240), the
Deutsche Forschungsgemeinschaft, the Academy of Finland (32731),
and the Human Frontier Science Program (RG82y1997-B).

1. Gray, C. M., König, P., Engel, A. K. & Singer, W. (1989) Nature (London) 338,
334–337.

2. Singer, W. (1999) Neuron 24, 49–65.
3. von der Malsburg, C. (1999) Neuron 24, 95–104.
4. König, P. & Engel, A. K. (1995) Curr. Opin. Neurobiol. 4, 511–519.
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