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In both hemodynamic and neurophysiological imaging methods,
analysis of functionally interconnected networks has typically focused
on brain areas that show strong activation in specific tasks.
Alternatively, connectivity measures may be used directly to localize
network nodes, independent of their level of activation. This approach
requires initial cortical reference areas which may be identified based
on their high level of activation, their coherence with an external
reference signal, or their strong connectivity with other brain areas.
Irrespective of how the nodes have been localized the mathematical
complexity of the analysis methods precludes verification of the
accuracy and completeness of the network structure by direct
comparison with the measured data. Therefore, it is critical to
understand how the choices of parameters and procedures used in
the analysis affect the network identification. Here, using simulated
and measured magnetoencephalography (MEG) data, and Dynamic
Imaging of Coherent Sources (DICS) for connectivity analysis, we
quantify the veracity of network detection at the individual and group
level as a function of relevant parameter choices. Using simulations, we
demonstrate that coupling measures enable accurate identification of
the network structure even without external reference signals, and
illustrate the applicability of this approach to real data. We show that a
valid estimate of interindividual variability is critical for reliable
group-level analysis. Although this study focuses on application of
DICS to MEG data, many issues considered here, especially those
regarding individual vs. group-level analysis, are likely to be relevant
for other neuroimaging methods and analysis approaches as well.
© 2007 Elsevier Inc. All rights reserved.

Introduction

Evidence from intracranial recordings suggests that areas
forming cerebral networks connect via synchronized neuronal
firing (Singer, 1999; Tallon-Baudry et al., 2001). Positron emission
tomography (PET) and functional magnetic resonance imaging
(fMRI) studies have assessed functional and/or effective con-
nectivity between brain areas (Büchel and Friston, 1998; Mechelli
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et al., 2002; Penny et al., 2004; Mechelli et al., 2005). In
hemodynamic connectivity analyses, the potential network nodes
are usually preselected among areas that are more active in a
specific task than in a control condition, and the models describing
the interactions are constructed based on a priori hypotheses of
cortical integration (Büchel and Friston, 1997; Friston et al., 2003).
In data-driven analysis approaches one would like to find the
functionally coupled brain areas directly using connectivity
measures, without a priori assumptions based on the overall level
of activation. A neural population may exhibit an equal amount of
activity in different conditions and, thus, not be revealed in contrast
analysis, although its coupling with other areas could vary between
conditions. Estimation of directed causality between brain areas
(Granger causality; Roebroeck et al., 2005) may provide a means
for identification of network nodes directly from the fMRI signals,
without prior selection of network nodes based on the level of
activation.

Magnetoencephalography (MEG) and electroencephalography
(EEG) allow real-time tracking of synchronously firing neural
populations. While intuitively they are optimally suited for direct
detection and characterization of functional coupling, the equivocal
relationship between electromagnetic fields and neuronal sources
has limited coherence analysis mostly to the sensor level, without
extending to the actual brain areas (Gerloff et al., 1998; Sarnthein
et al., 1998; Andres et al., 1999; Rodriguez et al., 1999; von Stein
et al., 1999; Gross et al., 2004; Palva et al., 2005). Similarly to the
typical approach in exploring hemodynamic connectivity, some
EEG and MEG studies have constructed networks at cortical level
based on the overall level of activation (Cosmelli et al., 2004;
Astolfi et al., 2005) or difference in rhythmic power between
experimental conditions (Gross et al., 2004) and estimated
interaction between those areas.

Only a handful of studies have sought to directly localize
interacting cortical areas based on correlation measures (Gross
et al., 2001; Gross et al., 2002; Schnitzler and Gross, 2005; Jerbi
et al., 2007). Many of those MEG studies employed Dynamic
Imaging of Coherent Sources (DICS), in which a frequency-
domain spatial filter is used to estimate time-courses of neural
activity in different cortical areas and coupling between areas
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(Gross et al., 2001). As these experiments focused on the motor
system, electromyogram (EMG) recorded from the moving arm/
hand muscles served as an external reference signal. The EMG–
MEG coherence allowed localization of the primary motor cortex
which, in turn, provided a cortical reference area for detection of
other functionally coupled brain areas. In realistic cognitive tasks,
meaningful nonbrain reference signals are usually not available
and, therefore, network structure must be determined directly from
brain activity. Recently, with further development of the DICS
method, we identified and characterized a left-hemisphere network
in continuous reading (Kujala et al., 2007).

When seeking answers to neuroscience questions, estimation of
interactions between cortical areas can be problematic. Regardless
of whether one uses hemodynamic or neurophysiological imaging
methods, it is impossible to directly verify from the originally
recorded signals whether the results of the analysis give a complete
picture of connectivity, e.g., by estimating whether the identified
areas fully explain the variance in the data. Thus, in order to utilize
connectivity analysis in a manner that accurately describes cerebral
interactions, it is essential to understand the effects of critical
parameters and specific choices that need to be made at different
stages of the analysis. Here, we used both simulated and measured
MEG data to quantify such effects on individual and group-level
results in the data-driven DICS analysis procedure. The present
evaluation includes the following steps: (1) estimation of frequency
ranges of interest; (2) identification of cortical reference area(s); (3)
cortico-cortical mapping; (4) significance estimation for coherent
connections; (5) network identification at group level. In real data,
network nodes may not be detectable by their level of activity but
only with the help of connectivity measures (Gross et al., 2002;
Kujala et al., 2007). The present simulations were constructed for
the most general case in which connectivity analysis is required for
network identification. The data set was designed to resemble real
data, including multiple subjects with interindividual variability in
the location of functional areas and complete with noise and
background activity, thus facilitating controlled investigation of
parameter values and choices made at different stages of analysis
that provide insights into network analysis of real neuroimaging
data. In localization of network nodes, we use coherence as the
measure of connectivity (Gross et al., 2001). Linearity makes the
calculation computationally feasible but, obviously, this type of
analysis may fail to reveal areas whose interactions are nonlinear.

The accuracy of localizing network nodes was compared when
the search was initiated from an external reference signal or when it
was based on connection density estimation (CDE). We evaluated
the influence of grid size (which defines the spatial sampling),
regularization (which determines the spatial extent of source
representation), and required minimum distance between candidate
nodes (which affects the amount of spurious coupling due to
leakage between spatial filters) on the sensitivity and accuracy of
the network identification. Detection of network nodes from
individual vs. group-level maps was evaluated both at the stage of
selecting reference areas and at the subsequent stage of cortico-
cortical search. Furthermore, at both stages, simulated data were
used to test the effect of interindividual variability on the
localization of the corresponding nodes. These analyses were
aimed at obtaining estimates of the extent to which the increased
statistical power of group-level analysis outweighs the interindi-
vidual variability in the localization of interacting areas and, thus,
whether group-level analysis can be recommended for the amount
of spatial variability observed in real data. The concepts emerging
from the simulation study are demonstrated on two real data sets, a
motor task with muscle activity as an external reference signal and
a reading task in which direct cortico-cortical connectivity analysis
is the only plausible option. Although this study focuses on the
application of DICS to MEG data for extracting networks of
functionally coupled brain areas, many of these considerations are
conceptually relevant for all analysis methods that are used to
image and estimate neural connectivity based on neurophysiolo-
gical or hemodynamic data.

Methods

Dynamic imaging of coherent sources (DICS)

DICS (Gross et al., 2001) is a beamforming technique (Sekihara
and Scholz, 1996; Robinson and Vrba, 1997; Van Veen et al., 1997;
Gross and Ioannides, 1999; Hillebrand et al., 2005) in which the
oscillatory components and their linear interactions are represented
as a cross-spectral density matrix (N×N×F; N=number of MEG
sensors, F=number of frequency bins). From the cross-spectral
density matrix, it is possible to derive two measures, power and
coherence. Coherence is obtained by normalizing the cross-spectral
density between two signals with their power spectral densities. In
DICS, a linear transformation (based on a constrained optimization
problem), which acts as a spatial filter, is used to image power and
coherence in the brain at a given frequency range. The
transformation is attained by minimizing the variance of the output
of the spatial filter while constraining the filter such that activity of
the source at position r is passed with unit gain:

min½EfjjAM jj2g þ ajjAjj� subject to ALðrÞ ¼ I; ð1Þ

where E is the expectation value, A the linear transformation
matrix (spatial filter), M the Fourier transformed data, I the unit
matrix, and α the regularization parameter. The columns of L(r)
contain the solution of the forward problem for two orthogonal
tangential unit dipoles at r. In a spherical conductor, such dipoles
span the space containing all possible source orientations that can
be detected with MEG. In the Results, we express the regulariza-
tion parameter relative to the largest eigenvalue of C( f ), where
C( f ) is the cross spectral density at a specific frequency bin or
range, i.e., α=λmaxαrel, where λmax is the largest eigenvalue and αrel
is the relative regularization. The frequency-dependent solution of
Eq. (1) is

Aðr; f Þ ¼ ðLT ðrÞCrð f Þ�1LðrÞÞ�1LT ðrÞCrð f Þ�1; ð2Þ
where Cr( f )=C( f )+αI. The cross spectrum between the tangen-
tial source combinations at the two locations (r1, r2) can then be
estimated as

Csðr1;r2;f Þ ¼ Aðr1; f ÞCðf ÞATT ðr2; f Þ: ð3Þ

In the special case when r1 equals r2, Cs represents the estimate
of signal power at each location. If the singular values of Cs fulfill
λ1NNλ2 the cross spectrum, and thus both coherence and power
estimates can be attributed to sources with fixed orientations. If the
singular value relation does not hold, power and coherence
estimates can be obtained by using the trace of the matrix Cs(r1,r2,
f ). The singular value relation also provides an alternative
approach in which the coherence estimation may be limited to
sources which have a fixed orientation. This assumption is well
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grounded in neurophysiology as detection of neuronal events with
MEG requires simultaneous activation of thousands of pyramidal
cells in a small cortical patch, with the parallel orientation of their
apical dendrites allowing summation of the neural currents.
Sources with a salient, dominant direction of current flow are thus
more likely to represent accurate localization of a focal functional
area than sources with no preferred (random) direction.

The dense sensor spacing of the whole-head MEG systems used
in the present study samples the signals from the entire brain
without spatial aliasing (Ahonen et al., 1993), and with
beamforming techniques, one can obtain an estimate of the signals
originating from any given location in the brain (Van Veen et al.,
1997). As the accuracy of MEG is around 2–3 mm under favorable
conditions (Hämäläinen et al., 1993), the beamformer estimation
is typically performed with a grid spacing of some millimeters,
covering the entire brain. The DICS tomographic maps are formed
by calculating the power and coherence estimates at all grid points
and overlaying them on individual anatomical magnetic resonance
images (MRI). The reference signal used in coherence calculation
can be either an external signal or the beamformer estimate of
activity originating from a selected cortical location. Power maps
are presented as power statistical maps (pSPM) and the 99%
confidence level for coherence can be estimated using surrogate
data (Priestley, 1981). Once brain areas are identified, their time-
courses can be extracted using the spatial filter (Van Veen et al.,
1997).

Selection of frequency range

With DICS a frequency range must be selected before the
spatial filter is applied to the data. Frequencies at which there is
high oscillatory power and modulation between conditions can
be estimated by calculating the power spectra at sensor level. As
the background rhythmic activity can mask small task-related
effects and as frequencies at which there are task-related changes
of oscillatory power may not coincide with those frequencies
which subserve interaction between cortical areas, it is also
important to evaluate connectivity as a function of frequency.
This was done by counting for each MEG sensor the number of
other sensors with which it showed significant coherence. The
significance levels were estimated using surrogate data (Priestley,
1981). To focus on long-range coherence, the two nearest
sensors in each direction were excluded from the coherence
estimation.

Finding reference areas

In mapping cortico-cortical coherence, at least one suitable
cortical reference area is required. We focused on two approaches,
the use of external reference signals and connection density
estimation (CDE). In CDE analysis, the brain was divided into
voxels of varying side length (6–12 mm at 2-mm steps) and
coherence was computed for all voxel combinations. CDEs were
obtained by counting, for each voxel, the number of connections
for which coherence exceeded a chosen threshold, beyond the
immediate neighborhood of the voxel (distance 4, 5, or 6 cm). The
effect of relative regularization that determines spatial specificity
was tested for three levels (αrel =0.01, 0.001, 0.0001). This initial
search was limited to the cortex (max. 15 mm below the cortical
surface) where the spatial resolution of MEG is best. For the
measured data sets, the CDE analysis was performed within the
left-hemisphere cortex. Because of the large number of connections
to be evaluated (millions of connections at this grid size), it was not
computationally feasible to estimate confidence levels (using
surrogate data) for each connection. Therefore, a fixed level of
coherence (0.1) was adopted at this stage, and confidence levels
were evaluated only for the final set of connections. The CDE
results were presented as normalized density statistical parametric
maps (dSPM), overlaid on anatomical MRIs (Dale et al., 2000).
Each point in these maps gives the relative amount of connections
from that voxel to all other voxels in the brain. Focal maxima from
these maps were taken as initial reference areas. When the
experiment included multiple conditions, contrast connection
density estimates (cCDE) were additionally computed by exclud-
ing connections for which coherence exceeded the threshold in
both conditions.

Cortico-cortical mapping

Starting from the reference areas, DICS was used to compute
coherence maps separately for each subject, with a 6-mm grid size.
Local maxima in the maps were identified as candidate nodes. The
confidence level of each connection was estimated using surrogate
data (Priestley, 1981; Halliday et al., 1995; Faes et al., 2004; Patel
et al., 2006). First, the time-courses of activation at the identified
areas were reconstructed using the spatial filter. Surrogate data
were then created by applying the same random permutation of
data samples for the time-series at both ends of a connection. This
type of surrogate data tests specifically for spurious coherence due
to leakage between spatial filters. If the two time-series have
common components due to the same activity seen at two sites
(leakage between spatial filters), also the shuffled time-series show
similar behavior. If, however, coherence results from two
independent yet correlated time-series, the shuffling destroys the
similarity between the time-series. Confidence levels for coherence
were obtained by estimating coherence between the surrogate
series and by computing the frequency histogram for coherence.
Coherence threshold was set to the desired percentile (here 99%) of
the coherence sampling distribution.

For evaluation of the networks at the group level, the individual
coherence data, in form of distributed maps or discrete significant
nodes, were transferred to a common coordinate system using an
elastic transformation (Schormann and Zilles, 1998). The inter-
subject consistency of the coherence maps was evaluated with a
one-sample t-test in the SPM2 software (Wellcome Department of
Imaging Neuroscience, University College London, UK, http://
www.fil.ion.ucl.ac.uk/spm/spm2.html). For the significant nodal
points, commonalities in the network structure were determined by
giving the individual nodes a spatial extent to account for the
spatial sampling resolution and individual variability in the
functional location of the regions, and by setting the data value
in each voxel within that extent to 1 or 0; 1 indicated that there was
at least one significant connection to/from that area, and 0 that
there was none. The intersubject consistency was tested using
SPM2, and areas passing this test were taken as group-level nodal
points of the network. The effect of spatial extent on network
identification was tested by giving the individual nodes an extent
of 1, 1.5, or 2 times the grid size. The effect of interindividual
variability in the locations of functionally similar cortical areas
(e.g., 9–13 mm in complex language tasks; Xiong et al., 2000) was
tested by introducing into the node locations no variation or
random variation of 1 or 2 times the grid size.

http://www.fil.ion.ucl.ac.uk/spm/spm2.html
http://www.fil.ion.ucl.ac.uk/spm/spm2.html
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Comparison of localization results

A one-sample t-test was used to test whether a reference area
was systematically mislocalized in any direction (x,y,z), and
whether its location was influenced by the analysis approach
(e.g., EMG–MEG coherence vs. CDE). Source locations deter-
mined at the individual vs. group level were compared using a
paired samples t-test. ANOVAs were employed for testing the
influence and interaction of multiple analysis parameters on source
localization.

Constructing the simulation

Simulated data were constructed in such a way that the areas
forming the cortico-cortical network could not be localized based
on their oscillatory power but that localization of coherence was
required for their identification. This is the most general (and most
difficult) case, and it has been encountered in real data sets (Gross
et al., 2002; Kujala et al., 2007). The data set, 4 min in duration,
was composed of five interacting neural sources, two additional
sources that were not functionally coupled with the other areas, and
background noise (Fig. 1a). The neural sources were represented
by current dipoles. The time-courses of activation in the source
areas were created by setting instantaneous frequencies at each
time-point and by then generating the corresponding frequency
modulated signals. The instantaneous frequencies consisted of a
base frequency and a random component. For the interacting
sources, the base frequency was set to 15 Hz, and the random
component for each source was set so that the instantaneous
frequencies fell between 14 and 16 Hz at all time-points. The
random components were varied until all the sources were coherent
with each other (coherence between 0.2 and 0.6).

The two noncoherent sources were included in order to mask
the oscillatory power of the coherent sources, while not interfering
with their mutual coupling. The time-series of the noncoupled
sources were generated by combining two different base
frequencies for each source; 9 Hz (strong) and 24 Hz (weak) for
source 1, and 10 Hz (weak) and 22 Hz (strong) for source 2. These
sources were more powerful than the interacting sources, even
around 15 Hz (Fig. 1c), thus effectively masking their activity.

Noise in the simulation was generated by combining white
noise at sensor level and background activity at source level. This
combination provides a more realistic noise profile than either
cortical or sensor-level noise types alone. The “noise” sources
representing background brain activity were simulated by placing
sources at regular 2-cm intervals throughout the brain, excluding
deep structures (approximately 150 sources per subject; Fig. 1a).
Their time-series were created by band-pass filtering white noise to
frequency ranges 5 Hz in width, with the maximum at a random
Fig. 1. Simulated data: source locations and sensor-level spectra. (a)
Locations of coherent sources (frequency range 14–16 Hz; triangles),
noncoherent sources (rectangles), and “noise” sources representing back-
ground brain activity (circles). (b) Coherence between the five interacting
source areas with and without the added noise component (dashed and solid
lines, respectively). (c) Oscillatory power of simulated sources, logarithmic
scale. The black dashed and dotted lines indicate the power of the two
noncoherent sources, and the solid grey line the power of the coherent
sources (peak at ∼15 Hz). (d) Oscillatory power and (e) number of coherent
connections for one MEG sensor. The thick gray curve represents the non-
coherent condition, the thin black curve the coherent condition.
frequency between 5 and 45 Hz. With the added noise the
extractable coherencies between the interacting sources fell
between 0.05 and 0.3. Fig. 1b shows the coherence between the
5 interacting areas with and without the added noise component.

In addition to the cortical signals, an independent signal which
was coherent with the time-series of one neural source was
generated to exemplify an external reference signal (e.g., EMG).
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Simulated data sets were generated separately for 9 subjects
(different brain geometries, different positions of the sensor array
with respect to the head; subject properties were taken from Kujala
et al., 2007). There were three simulation runs, with different
amounts of interindividual variation introduced in the source
locations (0 mm, i.e., exactly the same locations in all subjects; 5–
7 mm, i.e., some variation, approximately matching the grid size
used in DICS analysis; 10–12 mm, i.e., larger variation, reflecting
extensive anatomical variability of functionally similar areas).

In addition to this coherent condition, a noncoherent condition
was generated in which the coherence between the five interacting
sources remained below 0.1 (without the added noise component).
The distribution of instantaneous frequencies was similar to the
coherent condition (base frequency 15 Hz, same amount of random
component). The “mask” sources and the noise profile were similar
to the coherent condition. As illustrated in Fig. 1d, there were no
noticeable differences in the power spectra of the two conditions
but a marked difference in the connectivity spectra at ~15 Hz (Fig.
1e). In addition, the most powerful oscillations in the data (at
~9 Hz) were evident in the connectivity spectra (spurious
coupling), but the amount of connectivity at this frequency was
identical in the two conditions.

Results

Evaluating the method with simulated data

Finding reference areas
The simplest way to identify potential reference areas is to

localize sources of oscillatory power at a given frequency range.
Fig. 2a exemplifies the localization of a noncoherent source based
Fig. 2. Localization based on power and external signal-MEG coherence.
Localization of (a) maximum power at 8–10 Hz (strongest component at the
sensor level), (b) maximum power at 14–16 Hz (coherent frequency band),
and (c) strongest external signal-MEG coherence at 14–16 Hz using DICS.
The power maps were normalized to the highest power and the coherence
map to the strongest coherence in the brain.
on its oscillatory power at 8–10 Hz. For the coherent sources,
however, this approach was not rewarding: The spatial distribution
of power at 14–16 Hz did not agree with any of the source
locations in the simulated data (Fig. 2b). This discrepancy was due
to the fact that the correlated sources elicited only weak power
traces (SNRb0.5 for all coherent sources at 14–16 Hz). When the
external reference signal was used to find coherently active areas in
the brain (Fig. 2c), the location of maximum coherence
corresponded accurately to that of a simulated source (difference
between actual and computed location b2 mm in every subject).

The most general approach to obtain reference areas is to
identify them directly from cortico-cortical coherence. Fig. 3a
shows maxima of the connection density estimate (CDE) in one
subject (coherent condition). Of the eight identified maxima,
five corresponded well to the five simulated source areas
(difference 3–7.5 mm, mean 5.5 mm; spurious areas are marked
with a black box). There was no systematic bias toward errors in a
specific direction. For the 9 subjects, 6–9 focal maxima were
identified from the CDE maps. All the coherent areas were
localized in each subject, i.e., there was a focal maximum in the
CDE map within 1 cm of the original source location. In addition,
1–4 spurious reference areas were localized per subject. Fig. 3b
shows the results of contrast connection density estimation (cCDE)
between the coherent and noncoherent conditions. The contrast
improved the localization (difference between actual and com-
puted location 1.3–4.6 mm, mean 3.2 mm; cCDE vs. CDE, paired
samples t-test, t(4)=3.9, pb0.05) but did not eliminate the spu-
rious findings entirely.

CDE analysis: effect of analysis parameters
Multiple parameters influence the number of correctly and

spuriously identified network nodes and the localization accuracy,
most notably the grid size and amount of regularization used in
DICS computation, and the required minimum distance between
connected areas in CDE analysis (Fig. 4). When the grid size was
increased from 6 to 12 mm, the number of detected nodes
decreased, both in the correct (one-way ANOVA, F(3)=3.2,
pb0.05) and spurious (F(3)=8.6, pb0.01) category, and the
localization errors became larger (F(3)=3.3, pb0.05). Increasing
regularization had essentially the same effect on the detection of
network nodes: both the number of correctly (F(2) =53.5,
pb0.001) identified and spurious (F(2)=153.5, pb0.001) nodes
decreased. At the highest regularization level, almost no spurious
nodes were detected but, at the same time, only about 30% of the
coherent nodes were identified correctly. The value of the required
minimum distance between connected areas (4–6 cm) had no
significant effect on node detection or localization accuracy.

Sources with a salient, dominant direction of current flow are
likely to represent an accurate localization of a focal functional
area. Limiting the coherence estimates to sources with relatively
fixed orientations of current flow could thus improve detection of
correct nodes while reducing detection of spurious sources. Fig. 5
implies that this is the case for simulated data. The dominant
orientation of sources was calculated based on singular values of
cross spectral estimates at source level. In this simulation (one
subject), a ratio of 3 between the two singular values was sufficient
to enhance detection of correct nodes and reduce the number of
spurious nodes. When the ratio was not limited at all, the number
of spurious areas, in particular, was markedly increased.

Fig. 6 compares identification of reference areas from
individual vs. group-level CDEs. Whether group-level analysis



Fig. 3. Connection density maxima for a single subject. (a) Focal maxima of connection density estimate maps (CDEs) at 14–16 Hz for the coherent condition.
Each point in these maps gives the number of connections from that voxel to all other voxels in the brain, normalized to the highest number of connections per
voxel in this subject. (b) cCDE maxima for coherent vs. noncoherent condition. The cCDE maxima represent areas which were more densely connected to other
areas in the coherent condition than in the noncoherent condition. The slices for both CDE and cCDE maps advance from lateral (top) to medial (bottom) areas,
with the single right-hemisphere maximum at the bottom. Here, a minimum distance of 4.5 cm between voxels was used, and areas for which coherence exceeded
0.1 were defined as coupled. Furthermore, the coherence estimation was limited to areas which had a relatively fixed source orientation (cf. Methods and Fig. 5).
Corresponding areas identified using CDE and cCDE are shown on the same row. Spurious findings are marked with a black box.
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enhances or reduces the sensitivity and accuracy of the estimates
depends on the amount of interindividual variability in the
locations of the network nodes. Here, CDE was performed on
data sets in which the interindividual variation assumed three
different values. The CDE maps were computed separately for all
subjects using grid size of 6 mm, relative regularization of 0.001,



Fig. 4. Effects of parameter choices on CDE. Percentage of identified real
sources, number of identified spurious sources, and localization accuracy in
CDEs (rows from top to bottom; mean+SEM) as a function of grid size,
amount of regularization, and minimum distance between sources (columns
from left to right). Regularization is expressed as relative regularization (see
Methods). Significant differences (paired samples t-test, pb0.05) are
marked with brackets.

Fig. 5. Effect of source orientation fixedness on CDE. Number of identified
real (solid curve) and spurious (dashed curve) network nodes as a function of
the singular value ratio (estimate of source orientation fixedness) in one
subject.

Fig. 6. Accuracy of group-level CDE. Error in localizing the nodal points
(mean+SEM) from individual vs. group-level CDE when the intersubject
variability was increased from 0 mm through 5–7 mm to 10–12 mm in three
simulations. Significant differences (paired samples t-test, pb0.05) are
marked with brackets.
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minimum distance of 5 cm and singular-value ratio of 5. Individual
reference areas were selected by identifying focal maxima from the
CDE maps separately for each subject. Group-level CDE was
obtained by combining the individual CDE maps (after a spatial
normalization), and focal maxima were identified from this group
map. The mean localization error for the five nodal points
determined from the individual CDEs was compared with
estimation of those same nodes from the group-level maps
(transferred to individual anatomy). There was a significant
interaction between intersubject variability and individual/group-
level analysis (repeated-measures ANOVA, F(1,16) = 11.1,
pb0.01). Fig. 6 shows that group-level analysis, indeed, improved
localization accuracy when there was no interindividual variability
in the simulated source locations (t(8)=3.8, pb0.01). Introduction
of variability, 5–7 mm or 10–12 mm, reduced the effectiveness of
the group-level analysis, rendering analysis at the individual level
more accurate (t(8)=2.9 for 5–7 mm, pb0.05; t(8)=4.5, pb0.01
for 10–12 mm). For intersubject variability of 10–12 mm,
localization from group-level maps was, on average, 4 mm less
accurate than when the nodes were identified separately from the
individual maps. For the group-level analysis, increase in
variability systematically increased the localization error (one-
way ANOVA, F(2)=21.4, pb0.001). For individual level analysis,
the localization error remained essentially the same (one-way
ANOVA, F(2)=0.2, p=0.8, n.s.). Mislocalization of a reference
area may have an adverse effect on further network analysis. A
localization error of 10 mm can reduce the estimated level of
coherence with other nodes to 50% of the actual value, and to 80%
even for a relatively minor mislocalization by 5 mm. Such a drop
may suffice to reduce the coherence estimate below the confidence
level.

Cortico-cortical mapping at individual and group level
When a spatially and functionally comparable reference area

can be identified systematically across individuals, it is possible to
search for cortico-cortical connections directly at the group level
by computing coherence maps starting from the common reference
area and testing the maps for significant group-level effects (e.g.,
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one-sample t-test in SPM2). Fig. 7a shows the results of such an
analysis performed on the simulated data. Here, the common
reference area was localized using the external reference signal. All
the remaining four coherent sources (cf. Fig. 1a) were evident in
the group-level map (difference between the actual and observed
source locations 3.3–5.1 mm, mean 3.8 mm). In addition, two
spurious areas survived to the group level.

In the more general approach, cortico-cortical mapping was
performed separately for each individual. The focal CDE maxima
(cf. Fig. 3a) were taken as reference areas for computing coherence
maps in the entire brain. Fig. 7b depicts the reference areas and the
identified additional nodes in one subject. The correctly identified
five reference areas led to a total of six real and two spurious
nodes. Three of the CDE maxima were spurious findings (black
boxes), and only one of them suggested a further connection
elsewhere in the brain, to one of the noncoherent sources. As some
connections may obviously lead back to other reference areas, one
always needs to assess the uniqueness of the identified nodes. Fig.
7 indicates that, e.g., the first reference area and the first connection
from the third reference area are within millimeters from each other
and are, therefore, likely to represent the same node. DICS can
typically distinguish between two source areas as separate if they
are located at a distance of 2–3 cm from each other; the more
orthogonal the directions of current flow in the two areas are, the
smaller the distance required for separation is (Liljeström et al.,
2005). When multiple sources fell within 2–3 cm of each other,
their mean location was used to represent the area. Of the 15
candidate nodes observed in this subject, 7 separate areas were
eventually identified.

After the candidate network nodes had been determined in the
individual subjects, surrogate data were used for estimating the
99% confidence level of coherence for all connections in order to
limit the final set of nodal points to significantly coupled areas.
Fig. 8 shows significance estimation of coherence between the 7
areas identified for the subject presented in Fig. 7. Areas 1–5 (Fig.
8a) correspond to the five coherent source areas (within 7.0±
1.6 mm of the original source location), area 6 to one of the
noncoherent source areas with strongest power at 14–16 Hz (cf.
Fig. 1), and area 7 to a source area midway between two of the
coherent nodal points. For this subject, five connections passed the
statistical test (1–2, 1–5, 2–3, 2–5, 3–4) (Fig. 8b). Accordingly, all
the five coherent areas and only those areas were accepted into
group analysis. Across subjects, 6–10 areas were originally
included in the candidate networks. Out of them, 4–7 areas passed
the confidence threshold and were included in the further group-
level testing. Across simulations, for all subjects, at least four
correctly identified areas passed the confidence level estimation (in
total 98% of the real nodes survived the testing). Maximally three
subjects had up to two spurious connections which passed the
confidence level estimation (2.4% of all spurious connections).

Network identification: from the individual to group level
One may wish to focus further characterization of the network

(e.g., phase synchronization, direction of information flow) solely
on the nodes that were found systematically across subjects. We
estimated the between-subjects consistency of network nodes when
the five coherent sources across subjects were located in exactly
matching anatomical sites, and when an interindividual variation of
5–7 mm or 10–12 mm was introduced in the simulated source
locations. When the individually determined nodes were given an
extent of 6 mm (one grid space) in each direction and the variation
was 0 mm or 5–7 mm, all five simulated nodes were evident in the
group maps (in at least 4 subjects). At interindividual variability of
10–12 mm, the extent of one grid spacing revealed only four
simulated nodes. However, when the extent was increased to 9 mm
(1.5 times the grid spacing), all five nodal points were again
consistently detected across subjects. When the extent was
increased further to 12 mm (twice the grid spacing), two spurious
areas emerged in the group data, in addition to the five simulated
nodes.

An important practical question is whether it is sufficient and
reasonable to adopt the group-level network nodes or whether it
would be beneficial to adjust the exact location of the nodal points
according to the individually determined nodes. Exact localization
of the reference area has a strong effect on the estimated coherence
values. Fig. 9a compares the mean localization error of the five
coherent areas, across subjects, when the nodes were determined
from the group-level consistency maps (transferred back to the
individual coordinate systems) and from the individual coherence
maps. Repeated-measures ANOVA showed a significant interac-
tion between the intersubject variability and individual/group-level
analysis in the localization accuracy (F(1,16)=5.6, pb0.05). When
there was no variation between subjects, the group-level analysis
was more accurate (t(8)=5.0, pb0.01). When the variation was
10–12 mm, the individual level analysis was more accurate (t(8)=
5.6, pb0.01).

An alternative approach is to use individual nodal points to
refine the network identified at the group level. The final network
can be obtained by replacing a group-level nodal point with the
individual nodal point if one can be found within a predefined
distance from the group-level locus. Fig. 9b demonstrates how the
localization is affected when the required minimum distance for
replacing a group-level node by the corresponding individual node
is varied between 5 and 20 mm in 5-mm steps, or when using
group-level loci only (i.e., required minimum distance 0 mm). The
interaction between the distance criteria and intersubject variability
reached significance (repeated measures ANOVA, F(4,40)=3.4,
pb0.05). When there was no intersubject variability, and when the
intersubject variability was 10–12 mm, the differences in the
localization accuracy were significant (no variation, F(4)=8.5,
pb0.001; 10–12 mm variation, F(4)=16.1, pb0.001). When the
source locations were exactly the same in all individuals, the
group-level localization and localization using the 5-mm distance
criterion were more accurate than the localization using the larger
distance criteria (t(8)N3.0, pb0.05), with no difference between
the distance criteria exceeding 10 mm. When the intersubject
variation was 5–7 mm, all selection approaches yielded approxi-
mately the same mean error of localization. When the intersubject
variation was 10–12 mm, localization was more accurate with all
the four different distance criteria than using the group-level nodes
(t(8)N3.1, pb0.05). Furthermore, localization was the more
accurate the larger the distance criterion used (t(8)N2.4,
pb0.05). Here, the marked improvement in localization was due
to the increase in the number of accepted individual-level nodes
(12/45 for 5 mm, 28/45 for 10 mm, 38/45 for 15 mm, and 43/45 for
the 20-mm distance criterion).

Application to real data

We evaluated whether the external-reference and CDE
approaches yield similar results in localizing cortical reference
areas, using a finger movement task. A data set recorded during
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Fig. 8. Significance estimation. (a) Identified areas and (b) coherence
between them (one subject). The solid lines represent the estimated
coherence between areas and the dashed lines the 99% confidence levels
of coherence. Areas 1–5 correspond to the coherent nodes of the network,
area 6 corresponds to a noncoherent source area with high power at 14–
16 Hz range (spurious connectivity), and area 7 lies between two of the real
sources.
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reading was employed to investigate whether cortico-cortical
networks can be constructed systematically across subjects without
an external reference signal.

Finger movements, with an external reference signal
The first data set was collected from 9 healthy, right-handed

subjects while they performed continuous, self-paced horizontal
flexion and extension movements with their right index finger
(Gross et al., 2002). Brain activity was recorded with a whole-head
Neuromag 122-channel MEG system, band-pass filtered at 0.03–
330 Hz, and sampled at 1 kHz. Surface EMG was measured from
the right hand and arm muscles.

EMG–MEG coherence showed a salient maximum at 6–9 Hz
that revealed a strong node in the primary motor cortex (M1), in all
9 subjects. When coherent cortico-cortical connections starting
from M1 were estimated in the same frequency range, the premotor
cortex was identified in all subjects. Fig. 10a shows, for one
subject, M1 localized based on EMG–MEG coherence, the
subsequently identified premotor cortex, and the group-level result
when coherence maps were computed starting from M1 and
submitted to one-sample t-test in SPM2. Both the common
Fig. 7. Cortico-cortical connections. (a) Cortico-cortical connections at the group le
by calculating the individual coherence maps and submitting them to a one-sample
the slice was centered. (b) Coherent connections (coherenceN0.1), starting from C
coherence of a reference area with itself. Spurious reference areas and spurious conn
maxima did not yield focal connections exceeding the threshold (0.1). One spurious
threshold.
reference area (M1) and the premotor cortex were evident in the
group-level statistical map.

Meaningful cortical reference areas were also found directly
from the MEG signals by using CDE in the left hemisphere. The
estimation produced multiple maxima, but for all 9 subjects two of
the maxima corresponded to the M1 and premotor cortex. Here, the
orientation fixedness constraint was used to improve the localiza-
tion. The singular value ratio (estimate of source orientation
fixedness) was varied between 1.5 and 3 in order to limit the
analysis of coherence to about 10% of all connections in each
subject. Fig. 10b shows the CDE maxima corresponding to M1 and
premotor cortex for the same subject as in Fig. 10a, and the center
points of these two maxima for all 9 subjects. The differences in
localizing M1 and the premotor cortex from EMG–MEG
coherence or using CDE on MEG data were 7.5±1.2 (mean±
SEM) for M1 and 8.1±0.9 for the premotor cortex (values for all
individuals in Fig. 10c). The differences were not biased to a
specific direction.

Continuous reading, without external reference signal
The second data set was recorded during a paradigm in which

words were presented visually in a rapid sequence (Kujala et al.,
2007). Nine healthy, native English-speaking subjects participated
in this study. Words forming a continuous story were presented in
separate blocks at three individually determined rates. At the
slowest rate (5–12 words/s), the subjects could understand the story
easily, at the medium rate they could comprehend part of it, and at
the fastest rate (20–30 words/s) they were unable to follow it. In
addition, words were presented in a mixed order at the slowest rate.
Brain activity was recorded with an Elekta-Neuromag VectorView
MEG system, pass-band filtered at 0.03–200 Hz and digitized at
600 Hz.

There were no meaningful external reference signals available.
Hence, CDE was used to localize initial reference areas. The
locations of the CDE maxima were too variable for identification
of a common reference area for all subjects. Thus, the cortico-
cortical networks had to be identified by finding coherent
connections from multiple reference areas, separately for each
subject (12–18 areas in total). Fig. 11a shows the results of the
network identification where connections exceeding the 99%
confidence level were included in the intersubject consistency test.
The end points of those connections were given an extent of twice
the grid spacing, and nodes that had been detected in at least four
subjects were accepted as nodal points of the network. Nine
distinct regions were identified from the group map. The labels for
the nodal points were obtained by transferring the areas of each
subject to a template created by the Montreal Neurological Institute
(MNI) (Collins et al., 1994) using SPM2. The corresponding
Talairach coordinates were determined using a nonlinear transform
of MNI to Talairach (Brett et al., 2002). Fig. 11b shows a surface
projection of all the individually determined nodes (12–18 per
subject). Of the individual-level significantly coupled nodes, 53%
were located within 1 cm of a group-level node, as denoted by the
vel, starting from a common reference area. The connections were estimated
t-test in SPM2. In each view, the crosshairs indicate the maximum on which
DE-based reference areas, in one subject. The left-most column portrays the
ections are marked with a black box. In this subject, two of the spurious CDE
reference area (fifth row) yielded a clearly focal connection that exceeded the



Fig. 9. Accuracy of network identification at group level and individual
level. (a) Localization error (mean+SEM) when nodal points were
determined from group-level data and when nodal points were determined
from individual results, for three levels of interindividual variability in node
locations. (b) Localization error (mean+SEM) of nodes determined from
group results and individual maps when the distance criterion for replacing a
group-level node with an individual nodal point was varied from 0 to 2 cm.
Significant differences (paired samples t-test, pb0.05) are marked with
brackets.
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colored dots and spheres. Further characterization of the group-
level nodes, based on cortical time-series of activation, produced
systematic results across subjects on phase coupling and direction
of information flow (Granger, 1980; Tass et al., 1998; Roebroeck et
al., 2005) that mirrored the subjects' ability to comprehend the text
(Kujala et al., 2007).
Fig. 10. Slow finger movements: EMG–MEG coherence vs. CDE.
Identification of cortical networks for one subject when reference areas
were localized using (a) EMG–MEG coherence and (b) CDE. Group-level
results are depicted below. (c) Difference between EMG–MEG and CDE
localization for nodes in the motor cortex (M1) and premotor cortex in each
of the 9 subjects.
Discussion

Hemodynamic and neurophysiological methods have been used
to assess cortico-cortical interactions noninvasively, typically by
first localizing areas that show task-specific activations. Coupling
within the network has then been characterized by either directly
calculating interactions between its nodes or in a hypothesis-driven
approach, by constructing models of interactions and fitting the
measured data to them. A limitation here is that the activated areas,
or areas in which activity is modulated by the task, are not
necessarily the most relevant nodes of the interacting cortical
network. Alternatively, one can identify cortico-cortical networks
in a data-driven manner, by first selecting a reference area in the
brain, and then locating other areas with time-courses of activation
coupled to that in the reference area (Gross et al., 2001; Fox et al.,
2005; Fox et al., 2006; Kessler et al., 2006). Here, a possible
problem lies in the large number of degrees of freedom, i.e., it may
be difficult to identify convergent networks across subjects,
especially ones that are highly relevant to the studied task. In
electromagnetic methods (EEG, MEG), external reference signals
can facilitate identification of cortical reference areas. Recording of
hand or arm movements has been particularly powerful in this
regard (Gross et al., 2002; Butz et al., 2006; Jerbi et al., 2007). In
hemodynamic methods (fMRI), interaction analysis has also been
performed by calculating correlations between all voxels or among
a large number of predefined areas (Eguiluz et al., 2005; Achard et
al., 2006). The same type of approach has been applied to MEG
data as well at the sensor level (Bassett et al., 2006; Langheim et
al., 2006; Stam et al., 2006). However, regardless of the approach
used in the connectivity analysis, it is not possible to evaluate
whether the connectivity structure of the identified areas explains
the variance of the measured data in the same direct manner as in
activation studies. The set of identified areas may form only a
portion of the entire network and provide a misleading representa-
tion of the connectivity pattern (Salmelin and Kujala, 2006).

Here, in order to gain better understanding of how the choices
made at different stages of the analysis affect the outcome, we
simulated a realistic MEG experiment, with multiple participants.
The simulated data were constructed to resemble real data, i.e., the
activity of the interacting nodal areas was too weak to be identified
based on their oscillatory power, and the localization had to rely on
coupling measures. Furthermore, the anatomical correspondence of
the simulated sources between subjects was systematically varied
and the effect of such interindividual variability on connectivity
estimates evaluated. The DICS analysis approach was further
applied to two real data sets to demonstrate its functionality.
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Perhaps the greatest risk in coupling analysis are false positives,
i.e., detection of spurious areas that are simply artifacts of the
neuroimaging and analysis methods and play no meaningful role in
the network. With electromagnetic measures, it is possible that a
detected connection results from a single source area that is
erroneously regarded as two spatially separate regions with
synchronized time-courses of activation. The present DICS
analysis is, in principle, susceptible to spurious connectivity
starting from the identification of the frequency ranges of interest.
Peaks in sensor-sensor coupling at specific frequencies may be due
to activity leaking to multiple sensors, which could even pass
significance testing. However, it should be possible to identify and
reject such spurious features using multiple experimental condi-
tions. Even though perfectly power-matched control conditions
cannot usually be created, well-matched ones should enable
identification of frequencies at which the amount of coupling,
but not the amount of oscillatory power, is affected by the
experimental condition. Here, for the simulated data, sensor-level
connectivity analysis allowed detection of frequencies at which
there was coupling but no evident power. Furthermore, inclusion of
a power-matched control condition in which activity was
noncoherent made it possible to discern the frequencies relevant
for interareal connectivity from those with high power only.

At the cortical level, part of the nodal points emerging in the
analysis will most likely be spurious even if they appear to be focal
and located in functionally meaningful areas. In the present
simulation, use of an external reference signal resulted in very
accurate localization of a common cortical reference area across
subjects (localization errorb2 mm), and the subsequent localiza-
tion of the network with group-level SPM2 analysis resulted in
identification of all the interacting areas. However, in addition to
the actual simulated nodes, two spurious areas passed the group-
level consistency test. Spurious areas appeared also when the data
analysis was performed solely on the basis of MEG signals, using
connection density estimation (CDE). By using contrast CDE maps
(coherent vs. noncoherent condition), spurious maxima were
reduced in number although not completely eliminated. When
the reference areas had been identified correctly, the proportion of
spurious nodes was relatively small, and this ratio was further
improved by estimation of confidence level, based on surrogate
data. The surrogate data should be selected carefully, as they must
be justified by the data (Schreiber and Schmitz, 2000). Specifically,
when choosing the surrogate data in coherence analysis, one
should consider whether the signals can be assumed to be
independent. For example, coherence between two time-series
could be destroyed either by randomizing their time samples
similarly or their phases differently. In beamforming, however, this
type of phase-randomized surrogate data would not preserve the
spatial filter leakage properties. Here, time-randomized surrogate
Fig. 11. Reading: Group-level nodal points of neural connectivity. (a)
Section overlays of brain areas in which the time-courses of activation at 8–
13 Hz were significantly coherent with those in other regions of the brain.
This map indicates intersubject consistency of spatial location of the nodes
(color denotes number of subjects). OT=inferior occipitotemporal cortex,
MT=medial temporal cortex, ST=superior temporal cortex, AT=anterior
part of the inferior temporal cortex, FM=face motor cortex, INS=insula,
CB=cerebellum, PF=prefrontal cortex, ORB=orbital cortex. (b) Surface
projections of all individual level nodes exceeding 99% confidence level
(dots) and their clustering to group-level nodal points (colored dots and
circles).
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data sets were constructed specifically to test for spurious
coherence due to leakage between spatial filters. When the
confidence level was set at 99% (based on surrogate data), 98%
of the real nodes, and 2.4% of the spurious connections survived
the test.

Based on the present simulation of a realistic experimental data
set, there is no simple optimal choice of parameters for the
analysis. For example, the number of spuriously detected areas
could be reduced by increasing either the grid size or the
regularization, but at the cost of compromising spatial specificity
and finding fewer of the true nodal areas. Varying the required
minimum distance between source areas appeared to have no
practical effect on the accuracy of localization. This stability was
most likely due to the fact that the distances varied from 4 to 6 cm,
which are clearly above the spatial resolution of MEG (2–3 cm;
Liljeström et al., 2005). Hence, the leakage between spatial filters
and, accordingly, detection of spurious coupling was reduced.
Thus, our simulations indicate that for real data sets a grid size of
~5 mm, which is still computationally feasible, a moderate level of
regularization, and a minimum distance of 4 cm between sources
would seem reasonable choices.

The clearest improvement in the localization accuracy was
achieved by demanding a fixed orientation of current flow within
each voxel for which coherence was estimated. This approach both
decreased spurious detection and increased identification of real
nodal areas. The demand of relatively fixed orientation is well
based in neurophysiology. In order for a neuronal event to be
detected with MEG, thousands of pyramidal cells within a small
cortical patch need to be activated simultaneously. The parallel
orientation of the apical dendrites of these neurons facilitates the
summation of the neural currents. Candidate nodes with a salient,
dominant direction of current flow are thus more likely to represent
accurate localization of a focal functional area than nodes with no
preferred orientation. In the simulations, we used point-like sources
with perfectly fixed orientations to represent the sources. In real
data, the efficiency of the orientation fixedness criterion is
influenced by the spatial extent and depth of the sources and the
signal-to-noise ratio. Here, when a moderate orientation fixedness
constraint was applied on the real data set in which subjects
performed finger movements, both M1 and the premotor cortex
could be identified from the CDE maps in all subjects, and the
nodes were located within ∼8 mm of the loci determined from the
EMG–MEG coherence.

Another important question in coupling analysis is whether it
should be performed at the individual or group level. Our
simulations showed that when the interindividual variation in
node locations was set to zero, identification of reference areas
from the CDE was more accurate at group than individual level.
However, as soon as some variability was introduced in the
locations (N5 mm), CDE was more accurate at individual than
group level. The relative merits of individual vs. group-level
analysis were quite similar in identification of the final network as
well. When there was no variability in the location of the simulated
source areas between subjects, group-level nodes represented the
network more accurately than individual-level nodes. In contrast,
when the variation was 10–12 mm, localization was more accurate
at the individual than group level. It appears that in localization of
interacting areas the benefits obtained from increased statistical
power are relatively small and that group-level analysis of
connectivity, both at the stages of identifying reference areas and
final networks, is more accurate than network analysis in
individual subjects only when the variation across subjects remains
small.

Also, in the group-level identification, the spatial extent given
to the sources, the grid size and the interindividual variability of
node location played an important role. When the interindividual
variation (0, 5–7 mm) and the spatial extent given to the individual
nodes (6 mm) both remained approximately within the grid size
(6 mm), only the five correct nodes survived the intersubject
consistency test. When the interindividual variation was increased
to 10–12 mm, only four of the real areas were detected in the group
map. When the spatial extent given to the nodes was increased to
the same level as the variation in location (12 mm), all five nodal
points again passed the test, but spurious areas additionally
emerged. Thus, an estimate of the magnitude of interindividual
variability would clearly help to ensure that the correct nodes
would be identified.

Here, coherence was used to image interaction between cortical
areas. Thus, this analysis would not detect connectivity between
cortical regions if the amplitudes of the coupled areas were entirely
random or if their coupling was nonlinear or reflected solely as
phase locking. Phase locking (Lachaux et al., 1999; Rodriguez et
al., 1999; Simoes et al., 2003) and phase synchronization (Tass et
al., 1998; Rodriguez et al., 1999; Gross et al., 2004; Palva et al.,
2005) would be better suited for imaging those types of
interactions. These measures, however, require an accurate
estimation of source orientation and the extraction of time-series
in each cortical location of interest. In practical use, measures of
signal phase are typically evaluated for brain areas that have been
first identified by computationally more efficient approaches, such
as localization of power or coherence (Gross et al., 2001; Gross et
al., 2002; Gross et al., 2004; Kessler et al., 2006). Neural
interactions can also be imaged by evaluating effective connectiv-
ity between cortical areas, e.g., with Granger causality. Naturally, if
there is no information flow directly between areas or if the
apparent information flow is caused by interaction due to common
input, causal measures would not describe the coupling correctly.
Thus, it may be prudent to use multiple connectivity measures to
evaluate the significance of the findings. For example, converging
group-level results from both phase synchronization and causality
analysis would be strong evidence that the identified connections
reflect true connectivity and are not, for example, due to leakage of
activity from the same source. Combined use of these methods was
demonstrated on the data set that was recorded during rapid serial
visual presentation of words (Fig. 11; Kujala et al., 2007). The
network nodes were identified based on the MEG signals alone,
and the analysis produced comparable sets of significantly coherent
areas across subjects. Furthermore, both phase synchronization and
Granger causality yielded systematic results across subjects
between the different experimental conditions, increasing the trust
that the identified network indeed played a role in reading.

Direct localization of coupling enables the identification of
interacting cortical areas, irrespective of their level of activity,
without modeling assumptions such as those required, e.g., in
Dynamic Causal Modeling (Friston et al., 2003). The data-driven
localization also requires assumptions, such as models for the
neural currents and brain geometry and conductivity, but the
connected areas and the nature of their mutual interactions are
determined directly from the recorded data without a priori
assumptions. Here, we have shown that by selecting appropriate
parameter values it is possible to perform such identification
accurately, without excessive spurious connections. For real data, it
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is impossible to set all the parameters perfectly, but the present
simulations, and examples of real data, should help to better
understand how the choices made affect the outcome of the
analysis. The considerations on individual vs. group-level analysis,
in particular, are likely to be relevant for both electromagnetic and
hemodynamic neuroimaging approaches.
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