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Cortical rhythmic activity can be systematically modulated by stimuli or
tasks and may thus provide relevant information about brain function.
Meaningful use of those phenomena requires characterization of both
locations and time courses of event-related suppressions and increases of
oscillatory activity. However, localization of the neural sources of cor-
tical rhythms during intervals of very low levels of activity, and within
short time intervals, is not a trivial matter. Hence, event-related modu-
lation of rhythmic activity has typically been described at the level of
magnetoencephalography (MEG) sensors or electroencephalography
(EEG) electrodes, without reaching into the brain. Here, we introduce
erDICS, an event-related version of Dynamic Imaging of Coherent
Sources that allows spatial mapping of the level of oscillatory activity in
the brain as a function of time,with respect to stimulus or task timing. By
utilizing a time-resolved frequency-domain beamformer, erDICS yields
the spatial distribution of both power suppressions and power increases.
Permutation tests further reveal areas and time windows in which the
modulations of oscillatory power are statistically significant, in indivi-
dual subjects.We demonstrate the usability of erDICS on simulated and
real MEG data. From the erDICS maps we identify areas showing
salient event-related changes of rhythmic activity, represent them with
equivalent current dipoles and calculate their contribution to the mea-
sured signal. Comparison of this multidipole model with the original
signal yields a quantitative measure of goodness for the identified source
areas and the analysis approach in general.
© 2008 Elsevier Inc. All rights reserved.

Introduction

Magnetoencephalography (MEG) and electroencephalography
(EEG) provide a continuous real-time measure of neural activity.
Activation sequences associated with performing specific tasks or
processing different stimuli are typically studied by averaging the
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measured signal across repeated trials, aligned to stimulus or task
onset, and by focusing on the so-called evoked responses that
emerge from the noise. These “noise” signals, however, may also
contain potentially interesting information. The cerebrum exhibits
rhythmic activity the modulation of which is, unlike the evoked
responses, often not phase-locked to stimulus or task timing and is,
therefore, eliminated when the data is averaged across trials. This
event-related modulation of rhythmic activity may well provide
information about neural activity that is complementary to that
obtained with evoked responses (Salmelin et al., 2000). The best
known modulations of rhythmic activity are movement-related sup-
pressions and enhancements (Chatrian et al., 1959; Pfurtscheller,
1992; Pfurtscheller and Aranibar, 1979; Pfurtscheller and Lopes da
Silva, 1999; Salmelin and Hari, 1994; Salmelin et al., 1995), but
task-related modulations have also been found during, e.g., visual
search and working memory tasks (Jensen et al., 2002; Tallon-
Baudry et al., 1997). In particular, increased synchrony of rhythmic
firing within a neural population, which may show as an overall
higher level of oscillatory activity in MEG/EEG signals, has been
suggested to play a role in the binding problem, i.e., merging of
different types of information (e.g., color, shape, motion) into a
unified percept (Singer, 1999). In addition, it has been suggested that
the spatial distribution of brain areas in which the level of rhythmic
activity is affected by task corresponds to the spatial pattern of
activation obtained with functional magnetic resonance imaging
(fMRI) (Singh et al., 2002), and that the correspondence between
electrophysiological and hemodynamic measures might be particu-
larly pronounced for the gamma band (40–100 Hz) (Brookes et al.,
2005; Foucher et al., 2003; Niessing et al., 2005). Rhythmic activity
and synchrony at the neuronal population level are not directly
accessible with hemodynamic imaging methods (fMRI; positron
emission tomography, PET). Therefore, although accurate localiza-
tion is not the main strength of neurophysiological methods, it is
crucial to develop analysis approaches for neurophysiological data
that allow reliable quantitative characterization of task-related mod-
ulations of rhythmic activity in both space and time. Such quanti-
fication is particularly feasible for MEG which lends itself more
readily for spatial mapping than EEG.
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In EEG/MEG the forward problem, i.e., calculation of electro-
magnetic field when the source currents are known, has a unique
solution. The inverse, however, i.e., determining the distribution of
source currents within the brain from the electromagnetic fields
measured outside of the head cannot be performed unequivocally
as, theoretically, one may construct an infinite number of source
current configurations that would generate an identical electromag-
netic field outside of the head. In practice, physical and physiolo-
gical realities set reasonable constraints to facilitate this analysis
(Hämäläinen et al., 1993; Lounasmaa et al., 1996). A frequently
used solution is to define the brain as a spherical conductor and to
model centers of active brain areas with point-like sources, referred
to as equivalent current dipoles (ECDs). An ECD represents the
center of an active cortical patch and the mean orientation and
strength of electric current therein (Hämäläinen et al., 1993).

ECD analysis has been used to localize the sources of rhythmic
activity, by finding best-fitting ECDs every few milliseconds over
extended intervals of strong oscillatory activity (Liljeström et al.,
2005). While ECD analysis reliably localizes, e.g., movement-
related enhancement of motor cortex 20-Hz activity (Salmelin and
Hari, 1994; Salmelin and Sams, 2002) it is perhaps not best suited
for analysis of rhythmic activity in general. The approach requires
a considerable amount of manual work and an experienced user,
e.g., when selecting the appropriate subsets of sensors for focusing
on the different source areas (Liljeström et al., 2005). Furthermore,
sources can only be localized for high levels of rhythmic activity
whereas areas showing suppression of rhythmic activity cannot be
identified directly because of the poor signal-to-noise ratio; it may
be possible to deduce such areas indirectly if they also show high
levels of oscillatory activity at another point in time.

Analysis methods for simultaneous localization of sources of
rhythmic activity based on beamformers (Van Veen and Buckley,
1988) have been developed recently (Cheyne et al., 2000; Gross
et al., 2001; Robinson and Vrba, 1997). These approaches employ a
spatial filter to reach from sensor-level signals to activity maps
estimated throughout the brain volume. The main drawback of
beamformer techniques is that, theoretically, they cannot identify
source areas with perfectly correlated time courses of activation. In
practice, however, even highly correlated sources can be determined
in realistic noisy MEG data (Sekihara et al., 2004; Van Veen et al.,
1997). In this work we focus on Dynamic Imaging of Coherent
Sources (DICS), a method originally developed for mapping coher-
ence and power of oscillatory activity in continuous tasks (Gross
et al., 2001). DICS is a linearly constrained minimum variance
beamformer (Van Veen et al., 1997), which aims to maximize the
signal from a given location while minimizing the interference from
other source areas. It uses cross-spectral density (CSD) matrix to
represent the oscillatory components and their linear dependencies,
and the spatial filter is defined separately for each frequency range
(Gross et al., 2001).

A relatedmethod called Synthetic ApertureMagnetometry (SAM)
(Robinson and Vrba, 1997) has recently been used for studying
modulation of rhythmic activity (Furlong et al., 2004; Gaetz and
Cheyne, 2006; Pammer et al., 2004; Singh et al., 2002). Similar to
DICS, SAM is an adaptive beamformer technique which associates
each point in the brain with a set of weights for MEG sensors. The
main difference between the methods is that in SAM the analysis is
performed in the time domain and the sensor-level data is represented
by the covariance matrix. TheMEG data is passed through the spatial
filters defined at grid points covering the brain and, thereafter, filtered
to the desired frequency band.
Oscillatory brain activity has also been investigatedwithmethods
based on minimum current estimates (Jensen and Vanni, 2002) and
minimum norm estimates (Lin et al., 2004). Both of these methods
belong to the class of distributed source models, i.e., they simulta-
neously estimate multiple sources. In order to access rhythmic acti-
vity, the estimates are based on Fourier or wavelet transformedMEG
signals. Anatomical constraints for the sources, e.g., based on fMRI
experiments can be added to the model (Dale et al., 2000; Lin et al.,
2004).

Most of these methods have been applied to experiments that
use a so-called ‘block design’ in which one task/stimulus type is
presented in a row, a setup commonly employed in fMRI studies.
MEG and EEG experiments more typically rely on ‘event-related’
designs in which tasks/stimulus types vary randomly. SAM has
recently been applied to such setups as well (Cheyne et al., 2006;
McNab et al., 2007; Pammer et al., 2006, 2004).

Here, we present the event-related DICS (erDICS) method that
allows study of modulations of oscillatory activity as a function of
time with respect to triggers. These triggers can be, e.g., onsets of
external stimuli or self-paced tasks. A wavelet-based filter bank
approach is used to estimate the frequency distribution within short
time intervals, which is then employed in calculation of time-
dependent CSD. The wavelet approach offers a better compromise
between time and frequency resolution than a typical short-term
Fourier transform. Prior to this work, DICS was best suited for
investigations of oscillatory activity in continuous tasks. With the
modifications presented here, themethod can bemore flexibly used to
study event-related modulations of rhythmic activity. By comparing
different time instances, besides studying increases in rhythmic
activity it is also possible to directly assess decreases, i.e.,
suppressions. Furthermore, the time-dependent CSD lends itself
naturally to mapping of event-related coherence as well, although the
present study focuses on the time-resolved localization of oscillatory
power.

As power maps are influenced by the overall levels of neural
activity and noise, theymay provide a partly erroneous view of brain
function. Here, in order to enhance the reliability of the mapping of
rhythmic activity statistical representations are generated by uti-
lizing maximum-statistics permutation testing (Holmes et al., 1996;
Maris and Oostenveld, 2007; Nichols and Holmes, 2002; Pantazis
et al., 2005). Considering the substantial interindividual variation of
the spatial and frequency distribution of rhythmic activity across
humans (Steriade et al., 1990) we will focus on individual-level
statistical tests since they are likely to provide a clearer picture of
rhythmic activity than direct group-level evaluation. A permutation
test requires two distributions of values for comparison (for instance,
power levels from “baseline” and “active” time segments). We con-
sider two alternative procedures for performing the statistical test. In
one approach, power maps are computed separately for each single
trial, which is a straightforward way of acquiring the sample dis-
tributions. However, this method suffers from a poor signal-to-noise
ratio (SNR) which might render the single-trial power maps useless.
In the other approach, we use the spatial filter defined in erDICSwith
the CSD averaged over trials to estimate the time course of activity at
each voxel in the brain and to gather the needed distributions from
these source-level time series. As a potential limitation, this technique
makes the assumption that the source locations andmain directions of
current flow in a voxel remain essentially unchanged over trials.

For any neuroimaging analysis approach it is essential to verify
that the identified brain areas and the modulation of activity therein
account for the original measured signals. From the erDICS maps



209H. Laaksonen et al. / NeuroImage 42 (2008) 207–217
we identify areas showing salient event-related changes in the level
of rhythmic activity, represent them with ECDs, estimate the time
course of activity in those areas and calculate their contribution to
the measured signal. Comparison of this model with the original
measured event-related modulation of cortical rhythms yields a
quantitative measure of goodness for the source model and the
analysis approach in general. Here, we demonstrate the usability of
erDICS with the help of simulations and two real data sets, one
recorded during self-paced finger movements and the other during
a reading task.

Methods

Analysis steps

The first step of the erDICS analysis is to define the frequency
range of interest (Fig. 1, box A). The initial evaluation was done by
Fig. 1. Flow chart of the analysis procedure. Box A: The frequency band of
interest is selected first, prior to use of erDICS, with the help of sensor-level
spectra, time-frequency representations (TFR) and temporal spectral evo-
lution (TSE) curves. Boxes B, C: Two alternative ways of estimating power
maps, using the cross-spectral density matrix (CSD). Box D: Statistical
testing of power maps. Steps B–D are done in erDICS mainly automatically,
without a need for user interaction. Box E: Verification of the source model
is done in user-controlled iterative steps. Source areas are identified, a source
model is constructed and the resulting model is compared with the measured
data.
inspecting the frequency spectra of the MEG sensor signals, cal-
culated over the entire data set. More detailed estimation included
time-frequency representation (TFR, Tallon-Baudry et al., 1997)
plots that display frequency content of the signal as a function of
time, aligned to trigger onsets and averaged across trials, and tem-
poral spectral evolution curves (TSE, Salmelin and Hari, 1994) that
depict themean amplitude of rhythmic activity in a selected frequency
band as a function of time, with respect to trigger onset. These
methods help to identify frequency ranges and timewindows inwhich
there are systematic stimulus/task-related decreases and increases of
rhythmic activity. These frequency and time ranges are employed in
the following steps of the analysis procedure. All the computations
can be done for all frequencies; here, we evaluate the CSDonly for the
selected frequencies in order to save time, computing power and
memory space. Furthermore, we can use frequency bands specific for
the data, which improves the SNR of the CSD estimate.

In the second phase (Fig. 1, boxes B1 and C1) we move from
sensor level to the level of the brain with the help of the cross-
spectral density matrix (Gross et al., 2001). The CSD is obtained as
the product of Fourier transformed signals as

Cij fð Þ ¼ Xi fð ÞTXi fð Þ; ð1Þ
where C represents the CSD, X is the Fourier transform of the
originally recorded MEG sensor signal, f is the frequency and
indices i and j run over all sensors.

In order to incorporate time information (erDICS) we estimated
the CSD from short time segments of the measured data by applying
a filter bank composed of complex Morlet wavelets. The Morlet
wavelet M is basically a sinusoid modulated with a Gaussian en-
velope function, defined as (modified from Tallon-Baudry et al.,
1997):

M t; fc; rtð Þ ¼ Se�t2=2r2t e j2kfct ; ð2Þ
where t is time, fc is the center frequency of the wavelet and σt

its standard deviation in the time domain. The scaling parameter
S is defined as S ¼ rt

ffiffiffi
k

pð Þ�1=2
. The standard deviation of the

wavelet profile in time (σt) and frequency (σf) are linked via the
equation

rf ¼ 1= 2krtð Þ: ð3Þ
The ratio w = fc / σf controls the trade-off between time and

frequency resolution and is referred to as thewavelet “width” (Tallon-
Baudry et al., 1997). Using these definitions the full width at half
maximum (FWHM) of Morlet wavelets in time (wt) and frequency
domain (wf) for a given wavelet width and center frequency are
defined as

wt ¼
ffiffiffiffiffiffiffiffiffiffiffi
2Tln2

p
=kTw=fc;

wf ¼
ffiffiffiffiffiffiffiffiffiffiffi
2Tln2

p
Tfc=w:

ð4Þ

Here we used the definition of FWHM for Gaussian distribution.
The temporal resolution is degraded with larger wavelet width and
improves at higher frequencies. The reverse applies for frequency
resolution. In this work we used wavelet width of 10, yielding wf =
0.23548 * fc and wt = 3.748 / fc.

By substituting the Fourier transformed signal in Eq. (1) with
signal filtered according to Eq. (2), a time and frequency-dependent
CSD (Cij = Cij(f,t)) is acquired. It can be estimated separately for each
trial (“single-trial CSD”) or averaged across all trials (“mean CSD”).
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In the next step (Fig. 1, boxes B2 and C2), the analysis proceeds
from MEG sensor-level signals to cortical activity. DICS/erDICS
uses a beamformer that is created by combining the CSDmatrix with
the geometry of the subject's brain, either in the form of a spherical
model or a realistic boundary-element model (BEM, Hämäläinen
and Sarvas, 1989). The choice of geometry defines the forward
problem solutions, or lead fields, and is a significant parameter in
beamformer analysis. Here, the spherical model was used because of
its simplicity and robustness. The power distribution is estimated in
a grid covering the brain volume, and is done with a linear trans-
formation referred to as a spatial filter. The spatial filter is specified
in form of a transformation matrix A (Gross et al., 2001):

A r; f ; tð Þ ¼ LT rð ÞC�1
r f ; tð ÞL rð Þ� ��1

LT rð ÞC�1
r f ; tð Þ; ð5Þ

where L(r) is the solution to the forward problem at location r, and
Cr = C + αI, with C as the CSD matrix and α the regularization
parameter. The power estimate at a given location is

P r; f ; tð Þ ¼ A r; f ; tð ÞC f ; tð ÞAT r; f ; tð Þ: ð6Þ

Beamforming with time-varying CSDs allows comparison of
spectral power at different time intervals, for example, between an
“active” post-stimulus interval and a pre-stimulus “baseline” interval
(cf. Fig. 1, box A) and, thus, localization of brain areas that display
relative increases and decreases in the level of rhythmic activity. We
evaluated the power maps in two alternative ways: (i) single-trial
CSDs (Fig. 1, box B1) were used to estimate power maps separately
for each trial as defined in Eq. (6). These single-trial power maps
(Fig. 1, box B2) were then subjected to further analysis (averaging
across trials, statistical testing). (ii) The mean CSD (Fig. 1, box C1),
averaged across trials, was used to create a spatial filter that was
applied to the raw data to extract the time course of activity at each
voxel. The raw data was further band-pass filtered and the instan-
taneous amplitudes were estimated with Hilbert transform. Projected
powermaps (Fig. 1, box C2) refer to estimation of power (i.e., square
of amplitude) maps in each trial via the voxel time courses.

Statistical testing

For evaluating statistical significance of the observed power
changes the trial-to-trial distribution of activation is needed per
voxel. We collected those values in two ways, by using single-trial
CSDs (and usual single-trial power maps) and mean CSD (and time
series from projected power maps), as described above. The two
approaches were tested on the same data set (Fig. 1, box D).

In order to estimate statistical difference between two time periods
(here, “active” and “baseline”), we performed a random permutation
test on the trial-to-trial power levels in each voxel. Random per-
mutation test belongs to the class of nonparametric tests and makes
minimal assumptions about the data, mainly that exchangeability of
labels is valid (Holmes et al., 1996). Here, we can state that under the
null hypothesis (“no difference”) the labels “active” and “baseline”
are interchangeable.

The voxel-based random permutation test was implemented as
follows: first, a statistic comparing two distributions (i.e., trial-to-
trial power levels in the “active” and “baseline” intervals) was
calculated per voxel (“original” statistic). Any statistic can be used,
and we used a common Student's t-test for this purpose. Second,
the samples in the two distributions were permuted randomly and a
new t-value was acquired. This step was repeated 5000 times and
all the t-values were recorded into a new distribution (“test distri-
bution”). The p-value for each voxel was estimated by checking
how much of the test distribution was below (or above) the original
t-value.

To decrease the amount of Type I errors (false positives) due to
multiple comparisons, a maximum-statistics approach was applied.
To this end, we collected the maximum and minimum t-values from
the test distributions in each voxel (“maximum” and “minimum”

distributions). These values defined new test distributions across
voxels, and the final p-values were estimated by comparing the
original t-values in each voxel to the maximum/minimum distribu-
tions across voxels in the same manner as in the regular permutation
test (separate one-tailed tests). By looking at the distributions based
on maximum or minimum t-values we can distinguish between
increases and decreases of rhythmic activity.

Verification of the source model

In the final stage (Fig. 1, box E) a quantitative estimate was
obtained on whether modulation of rhythmic activity in the iden-
tified brain areas indeed accounted for the stimulus/task-related
modulation originally measured by the MEG sensors. Here, proce-
dures that are typically used in the analysis of time-locked evoked
responses were adopted as follows: brain areas showing event-
related increase/suppression of rhythmic activity, i.e., local maxima/
minima of erDICS maps, were modeled as ECDs. The orientations
of the ECDs were acquired by first estimating source orientations at
the investigated time point. As these estimates are influenced by
background brain activity and noise, the orientations were calculated
also in the baseline interval. The final source orientations were then
computed by subtracting the baseline orientation from the orienta-
tion at the investigated time point (with both orientations weighted
by the corresponding power estimates), thus obtaining an orientation
that is assumed to more specifically reflect the activity of interest
during task or stimulus processing. Alternatively, one could use,
e.g., mean of the orientations in the baseline and target intervals or
orientation during the time period of maximum power for all time
points.

The quality of the resulting multi-dipole model was evaluated
by calculating the sensor-level TSE curves that activity in those
source areas would generate, and by comparing those curves with
the original TSE of the measured MEG signals. A goodness-of-fit
value g was calculated, which gives a quantitative measure on how
well the model fits the data:

g2 ¼ 1
T

X
t

1�
P

i bi tð Þ � b Vi tð Þð Þ2P
i bi tð Þ2

 !
; ð7Þ

where bi(t) represents the measured signal and b′i(t) the signal
generated by the constructed dipole model for sensor i at time t. In
this work the g-value was averaged over all sensors and the entire
epoch length (T is the total number of time samples). The final set
of ECDs was acquired by iteratively adding and removing sources
based on the projected power and statistical maps until a satisfac-
tory model with a high goodness-of-fit value was reached.

Measured MEG data

The real MEG data sets were recorded with a Neuromag Vector-
view™ 306-channel whole-head neuromagnetometer (Elekta Neu-
romag Ltd, Helsinki, Finland). The system contains 102 triple sensor



Fig. 2. Simulated sources. Three “real” sources (white squares) were placed
in the left and right hand motor cortex and in the left posterior parietal cortex
(above). These sources showed initial suppression of 20-Hz activity, fol-
lowed by a rebound, as illustrated by the mean TSE curve across simulated
trials (below, left). A “fake” source was also included (white triangle; top). It
displayed an artefactual strong rebound of rhythmic activity in 5% of the
trials that was evident in the average TSE curve (below, right).
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elements composed of two orthogonal planar gradiometers and one
magnetometer. The planar gradiometers detect the maximum signal
directly above an active cortical area; in this study, the analysis was
performed using the gradiometers. The data was band-passed to
0.03–200 Hz and sampled at 600 Hz. In all erDICS analyses the
brain was divided into grid points with a grid size of 10 mm. In the
first data set, the subjects were instructed to lift the index finger
every 5 s (Saarinen et al., 2006). Left and right index lifts were
performed in separate runs. In the second data set, the subjects were
instructed to silently readwrittenwords that were presented every 3 s
(Wydell et al., 2003).

Simulated MEG data

For initial validation of erDICS, a simple simulatedMEG data set
was generatedwith the same sampling frequency as for the realMEG
data, using the 204 gradiometers. The time series of the simulated
dipolar sourceswere forward-modeled to each sensor and, thereafter,
white noise was linearly added. The simulation contained three
“real” sources (Fig. 2). Oscillatory activity was modeled with sine
Fig. 3. Comparison between “meanCSD” projected powermaps and “single-
trial CSD” power maps. Blue and red arrows indicate the actual timing of
simulated suppression and rebound, respectively. The delay between end of
suppression and beginning of rebound was 0.3 s in case A and 1.2 s in case B.
Color indicates decrease (blue) and increase (red/yellow) of rhythmic
activity. In the case of “single-trial CSD” the activity spread out in time and,
therefore, the contributions of suppression and rebound overlapped when
they occurred close in time. The baseline interval was set at −100 to −67 ms.
(For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
waves. The instantaneous frequencies of the signals were modulated
between 18.5–21.5 Hz (at different time points) in order to decrease
coherence between sources. An additional fourth source represented
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a “fake” source that produced activity in strong bursts (20 times
stronger than in real sources) in 1/20 of the trials, coinciding with the
increased 20-Hz activity in the real sources. The SNRwas defined as
the ratio between Frobenius norms of signal and noise.

Results

Simulations

Fig. 3 illustrates the projected power maps for “mean CSD” and
estimated power maps for “single-trial CSD” approaches with the
simulated data, at SNR of 1/5. When the end of the suppression and
the beginning of the rebound were separated by 0.3 s, the “mean
CSD” yielded the correct locations of suppressions and increases
of rhythmic activity at the correct times (Fig. 3A). However, in the
“single-trial CSD” the time windows of modulation effects
were spread out, mainly due to the poor SNR of single-trial CSD.
The limited time resolution of the wavelet approach further
complicates the matter and causes temporally close suppressions
Fig. 5. Selection of frequency ranges and time windows in the finger lifting
task. TFR plots and TSE curves during right index finger movement for
selected single sensors over the left and right sensorimotor cortex (see
schematic heads in the TFR plots). Rhythmic activity in the 20-Hz band (14–
27 Hz) was enhanced strongly over the left hemisphere, and somewhat less
markedly over the right hemisphere, at 0.4 to 2.2 s after movement onset.

Fig. 4. Effect of SNR on the projected power and statistical maps of simulated
data. The maps were plotted at two time points, one during the suppression
phase (0.3 s) and the other during the rebound phase (1 s). The baseline
interval was set at −100 to −67 ms. In the projected power maps, the
maxima for suppression and rebound were at the correct location for SNRs
down to 1/15; at lower SNRs, most of the sources were still localized to the
correct location. Suppression was not fully detected below SNR 1/15. The
statistical maps indicated that the maxima representing the “real” sources in
the projected power maps represented areas with significant changes in
rhythmic activity. The “fake” source was evident in the power maps but was
eliminated in the statistical maps.
and rebounds to overlap, which diminishes both effects. The re-
sulting blurring of power maps prevented reliable estimation of the
exact timing of the modulation of suppression and rebound. When
the time delay between the subsequent modulations was increased to
1.2 s (Fig. 3B), the “single-trial CSD”maps becamemore accurate in
time but remained spatially more spread out than in the “mean
CSD”. Accordingly, in the following, we use only the “mean CSD”
approach for statistical testing.

The effect of noise on accuracy and sensitivity of erDICS was
investigated by starting from typical SNR observed in MEG mea-
surements and then decreasing the SNR to observe how the method
handles very noisy situations (Fig. 4). All the simulated cortical
sources were identified down to SNR of 1/15, both in the power
maps and in the statistical maps, and they displayed the correct time
behavior. As the noise level was increased, the maxima/minima
became spatially more spread out. At very low SNR (1/20), the
suppression was no longer detected, as noise started to dominate the
signal, but the rebound was still evident. In addition to the three
“real” sources, the “fake” source was evident in the power maps but
it was eliminated in the statistical maps.

The localization accuracy of the simulated power and statistical
maps was tested by performing the calculations with grid sizes
decreasing from 10mm to 1mm, at 1-mm steps. At an SNR of 1/5, for
all tested grid sizes, each simulated source was found at the correct
grid point (i.e., the localization error was less than half the voxel size).
The maxima were found at the correct locations down to SNR = 1/15,
and at SNRs 1/17 and 1/20 the maxima were either at the correct
location or fell on the immediately neighboring grid point.
Index finger movement task

Fig. 5 displays the TFR plot and TSE curves on one sensor over
the left and one sensor over the right Rolandic area when the
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subject lifted the right index finger. The frequency range used in
the TSE was 14–27 Hz, which showed high level of activity in the
TFR. This frequency range is typically modulated in motor tasks
(Pfurtscheller and Lopes da Silva, 1999; Salmelin and Hari, 1994;
Salmelin and Sams, 2002). There was a salient rebound of rhyth-
mic activity above the pre-movement level starting at about 0.4 s
after movement onset and continuing until about 2.2 s.

The erDICS projected power maps (Fig. 6) revealed a spatio-
temporal pattern that was in good agreement with the TSE curves.
The level of 20-Hz activity in the primary motor cortex was in-
Fig. 6. Activity maps for right and left index finger lifting tasks. Both
projected power and statistical maps are shown. The crosshair marks the
location of maximum power for each case. Power maps indicate increased
activity roughly from 0.5 s to 1.7 s, and the statistical maps demonstrate that
the observed activity was statistically significant. The 20-Hz modulation
appears more bilateral for left than right index finger movement. The
baseline interval was set at −67 to 0 ms.

Fig. 7. Selection of frequency ranges and time windows in the word reading
task. TFR plots and TSE curves for selected single sensors over the left and
right occipitotemporal cortex (see schematic heads in the TFR plots). Rhyth-
mic activity in the 10-Hz band (7–14 Hz) was strongly modulated over both
hemispheres. The strongest suppression of rhythmic activity occurred at
around 0.4 s and the maximum increase at around 1 s after word onset.
creased starting at about 0.5 s. In this subject, the effect was bilateral
for the left index finger movement and more lateralized for the right
index finger movement. The statistical maps (Fig. 6) confirmed that
the enhanced rhythmic activity evident in the projected power maps
was significantly different from the pre-movement baseline.

Based on the areas of activity indicated by the projected power
and statistical maps, the left and right motor cortices were iden-
tified as source areas and introduced in a multidipole model. The
two sources accounted well for the modulation of rhythmic acti-
vity, with a goodness-of-fit of 71% for the right and 79% for the
left index finger movement.

Silent word reading task

This task was cognitively more demanding than the simple motor
task described above. TFR plots on selected left and right occipito-
temporal sensors that typically reflect reading-relevant activation
(Salmelin, 2007) indicated 7–14 Hz as the frequency range of
interest (Fig. 7). The TSE curves for this frequency range (cf. Fig. 9)
implied that there were several active areas, but themain effects were
observed in sensors located over the occipital and parietal areas, with
maximum suppression at around 0.4 s and strong rebound at around
1 s (Fig. 7).

Based on the projected power and statistical maps (Fig. 8) two
salient active areas were identified, one in the right occipital cortex,
close to the midline, and the other more laterally in the left
occipital cortex (sources 1 and 2 in Fig. 9). These areas showed the
early suppression and later rebound of rhythmic activity that had
been observed in the sensor-level TSE curves (Fig. 7). The sta-
tistical maps suggested presence of two additional source areas
(sources 3 and 4 in Fig. 9). Together, the four localized areas were



Fig. 8. Projected power and statistical maps in the word reading task. The
displayed set of slices focuses on the occipital cortex. Suppression at around
0.4 s was followed by a strong bilateral rebound of 10-Hz activity at around
1 s. The baseline interval was set at −67 to 0 ms. Fig. 9. Verification of the source analysis. Top: Original TSE (solid line) and

TSE of the multidipole model (dashed line) for the silent reading task. The
model explained the data well with a goodness-of-fit of 79% over all sensors
and the whole analysis interval. At each recording site, there are two
orthogonally oriented planar gradiometers (schematic heads in the upper
right corner denote their sensitivity to direction of current flow). Bottom:
Locations of the four ECDs included in the multidipole model and their
source-level TSE waveforms.
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introduced in a multidipole model. This model accounted for most
of the observed rhythmic activity (Fig. 9), with a goodness-of-fit of
79%.
Discussion

In this study, we introduced erDICS, an event-related version of
Dynamic Imaging of Coherent Sources (Gross et al., 2001) that
allows spatial mapping of the power level of oscillatory neural
activity as a function of time, with respect to stimulus presentation
or task performance. This approach thus complements evoked
response analysis which is commonly used on neurophysiological
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(EEG, MEG) data to reveal changes of activity that occur system-
atically at the same time from trial to trial. Such analysis typically
dismisses equally consistent event-related modulation of rhythmic
activity because it is mostly not phase-locked to the stimulus or task
timing. With the help of a time-resolved frequency-domain beam-
former, erDICS yields the spatial distribution of both power sup-
pressions and power increases in a chosen frequency range, at a
chosen time, with respect to the power level during the pre-stimulus/
task baseline interval. Permutation tests further reveal the areas in
which the modulations of oscillatory power are statistically sig-
nificant, in individual subjects. Importantly, the goodness of the
results can be quantified by investigating how well the identified
source areas explain the original measured data.

Simulations showed that erDICS performs well with reasonable
noise levels typically encountered in real data. All the simulated
cortical sources were identified down to SNR of 1/15, and about
half of the sources (mostly during the rebound phase) even at the
lowest SNR tested (1/20). The localization of the simulated sources
was correct, within computational accuracy. At very low SNR the
source areas spread out in space, reflecting the increasing uncer-
tainty in localization of the sources. For a realMEG data set acquired
during simple index finger lifting task, the rhythmic activity was
readily localized in time and space, and it was centered on the hand
motor cortex, bilaterally. Furthermore, on a more complex data set
collected during a reading task a multidipole model based on regions
identified with erDICS accounted for the modulation of rhythmic
activity observed on the MEG sensors, thus confirming that the
source areas and their time courses of activation correctly described
the measured data.

In the analysis examples presented here, we used a CSD aver-
aged across the whole data set, which turned out to be an efficient
representation of the spectral and spatial relationships between
sensors and, with the help of the frequency-domain beamformer,
between brain areas. Intuitively, it would seem straightforward to
use single-trial CSDs to reach to the brain level and perform further
analysis on the resulting single-trial power maps. We tested this
approach, but the combination of poor SNR in single-trial CSDs
and unavoidable temporal spreading of wavelets resulted in blur-
ring of modulation effects when they occurred fairly closely spaced
in time. Furthermore, the averaged power maps were overall more
spread out (reflecting increased uncertainty) than the maps pro-
jected to the brain with the help of an averaged CSD. Considerable
increase in SNR would probably improve the accuracy of the
single-trial CSD approach, in line with recent observations of the
impact of experimental design and the amount of available data on
the estimation of the covariance matrix used in SAM (Brookes
et al., 2008). In real experiments, the adverse effect of low SNR on
single-trial CSD estimate is, unfortunately, hard to overcome as the
SNR of a single trial cannot usually be hugely increased, and the
improvement of SNR would have to come from an increase in the
number of trials. In experiments that use multiple conditions, or
complex cognitive tasks, it is nearly impossible to acquire hun-
dreds of trials per condition. With the SNRs tested here, mean CSD
performed better than single-trial CSD approach in separating
neural effects that were close in time.

Here we did not employ the full potential of a time-dependent
CSD matrix, but used a time-averaged CSD which enhances the
stability of the spatial filter. Averaging CSD over the whole time
range of interest builds on the assumption that the source orientation
does not change during the task. Obviously, this is the assumption
usually made in the analysis of evoked responses, and has been
successfully used in the field ofMEG/EEG studies. This assumption
could be incorrect if a voxel contains multiple sources of rhythmic
activity that are active at different times and have different orien-
tations. Further work will be needed to assess the advantages and
pitfalls of using time-variant CSD for creating time-variant spatial
filters. Most likely, a short moving-average time window will need
to be used, and the effect of decreased SNR on the CSD estimate
must be evaluated. The time-variant CSDs would have an obvious,
significant application in the study of interareal coherence that the
DICS method was originally developed for (Gross et al., 2001;
Gross et al., 2002; Kujala et al., 2007). It is likely to become a major
future application of erDICS. Nevertheless, event-related approxi-
mation of CSD matrix only utilizes parts of the measured data, as
opposed to the entire data set in the original DICSmethod. It is as yet
unclear how the limited SNR will affect the estimation of interareal
coherence.

Statistical testing was implemented in order to improve the re-
liability of the results. We chose permutation test as it does not
assume normality in the data and can easily be extended to handle the
multiple comparisons problem via a maximum-statistics approach
(Holmes et al., 1996; Nichols and Holmes, 2002). Permutation test is
a technique commonly used in functional imaging studies with PET
and fMRI, but it has recently been applied in MEG studies as well
with the increased interest in spatial mapping (Pantazis et al., 2005;
Singh et al., 2003). We developed and tested statistical analysis for
the single-subject level in order to retain the possibility to evaluate
each subject separately, which is the typical approach in MEG ana-
lysis. Here we used power and statistical maps in parallel, but a more
automatic approach would be to use statistical maps as “masks” for
power maps, i.e., one could employ the statistical maps for thresh-
olding, or use the p-values as weights for the power maps. Group
analysis can be readily implemented in various ways. One solution is
to use the permutation test at the group level, as the problems are
largely the same as those encountered at the individual level (non-
normal distributions, multiple comparisons problem). The group-
level approach has been used with SAM analysis (Chau et al., 2002;
Singh et al., 2003).

A typical neuroscience experiment containsmultiple experimental
conditions, and one seeks to identify active areas, their time courses of
activation, and any systematic variation in activation strength or
timing between conditions. Here, we illustrated an approach where
statistically significant event-related suppression and/or increase of
rhythmic activity was taken to indicate neural activation, and the
active areaswere localized by comparing “active” time intervals to the
pre-stimulus baseline interval. Let us assume that we would have an
experiment with a parametric design, including two conditions A and
B. We could localize the active areas in this same way separately for
each condition. If the areas are approximately the same, we could
model them as ECDs, check that they account for the measured data,
and compare the time courses of activation in those brain areas
between the experimental conditions. This approach is conceptually
identical to typical analysis of evoked responses. Alternatively, one
could directly compute power and statistical maps for a comparison
between conditions A and B, at specific times. This approach would
bemore similar to that typically used in fMRI analysis, and it has been
recently employed in SAM analysis of MEG data (McNab et al.,
2007). In the erDICS method, the “active” vs. baseline comparison
illustrated in the present report can easily be extended to a comparison
between experimental conditions.

The power maps of rhythmic activity, and the corresponding
statistical maps in individual subjects, lend themselves for direct
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comparison with simultaneously recorded phase-locked evoked re-
sponses. Importantly, if one records both neurophysiological (MEG)
and hemodynamic (fMRI) data on the same subjects, using a com-
parable experimental design in both modalities, these tools should
make it possible to evaluate whether event-related modulations of
rhythmic activity or traditional evoked responses correspond better
with the fMRI activation maps. Such comparisons could provide
important information not only on the relationship between imaging
modalities but also on the nature of neural processing.
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