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Abstract 

We developed a data-driven method to spatiotemporally and spectrally characterize the dynamics 

of brain oscillations in resting-state magnetoencephalography (MEG) data. The method, called 

envelope spatial Fourier independent component analysis (eSFICA), maximizes the spatial and 

spectral sparseness of Fourier energies of a cortically constrained source current estimate. We 

compared this method using a simulated data set against 5 other variants of independent 

component analysis and found that eSFICA performed best in characterizing dynamics at  time 

scales of the order of minutes. 

 

We then applied eSFICA to real MEG data obtained from 9 subjects during rest. The method 

identified several networks showing within- and cross-frequency long-range functional 

connectivity profiles which resemble previously reported resting-state networks, such as the 

bilateral sensorimotor network at ~20 Hz, the lateral and medial parieto-occipital sources at ~10 Hz 

, a subset of the default-mode network at ~8 and ~15 Hz, and lateralized temporal lobe sources at 

~8 Hz. 

 

Finally, we interpreted the estimated networks as spatiospectral filters and applied the filters to 

obtain the dynamics during a naturalistic stimulus sequence presented to the same 9 subjects. We 

observed occipital alpha modulation to visual stimuli, bilateral rolandic mu modulation to tactile 

stimuli and video clips of hands, and the temporal lobe network modulation to speech stimuli, but 

no modulation of the sources in the default-mode network. 

 

We conclude that (1) the proposed method robustly detects long-range cross-frequency networks 

at long time scales, (2) the functional relevance of the resting-state networks can be probed by 

applying the obtained spatiospectral filters to data from measurements with controlled external 

stimulation. 

 



1 Introduction 

During the past decade, the characterization of resting-state brain networks (RSNs) and their 

dynamics has become an important field of study (Damoiseaux et al., 2006; Fox and Raichle, 2007). 

A comprehensive meta-analysis of fMRI studies by Smith et al. (2009) suggests that brain networks 

active during complex stimulation or task performance were very similar to the networks active 

during rest. Given that the majority of RSN studies have characterized metabolic variations using 

positron emission tomography (PET) or hemodynamics using functional magnetic resonance 

imaging (fMRI), it would certainly be beneficial to characterize RSN dynamics using direct non-

invasive measures of neural activity such as electro- or magnetoencephalography (EEG/MEG). One 

characteristic feature of resting-state networks (RSNs) obtained from fMRI data is that they exhibit 

long-range correlations in the blood oxygenation level dependent (BOLD) signal. Since BOLD fMRI 

is a slow and indirect measure of brain activity, electrophysiological equivalents of RSNs using EEG, 

MEG, or simultaneous EEG and fMRI have been sought (Goldman et al., 2002, Laufs et al., 2003; 

Mantini et al., 2007; Moosmann et al., 2003). That search has been elusive until recently 

(dePasquale et al., 2010; Brookes et al., 2011; Knyazev et al., 2011). 

 

Independent component analysis (ICA) is a well established data-driven method for factoring 

resting-state fMRI data into temporally covarying, spatially independent atoms (Calhoun et al., 

2001; Beckmann and Smith, 2005). By contrast, in the analysis of EEG/MEG data, ICA has mainly 

been applied for artifact rejection. However, as we have argued earlier, ICA is the prime candidate 

for data-driven characterization of oscillatory activity as measured by EEG/MEG after  suitable 

transformations of the data (Hyvärinen et al., 2010; Ramkumar et al., 2011). In earlier work we 

have shown that the ICA cost function is more selective to the statistical properties of the 

oscillatory sources after a sparsifying transform of the data. First, we proposed that applying 

complex-valued ICA to short-time Fourier transforms (STFTs) of MEG signals is likely to reveal 

physiologically meaningful components (Hyvärinen et al., 2010). We have referred to this method 

as Fourier-ICA, but for distinction from other methods here we call it temporal Fourier-ICA (TFICA). 

Subsequently, we extended complex-valued ICA on STFTs from the sensor space to source space 

and further argued the advantage of imposing spatial and spectral sparseness on the Fourier 

coefficients to exploit prior knowledge on the nature of cortical oscillations. We have referred to 

this method as spatial Fourier-ICA (SFICA) (Ramkumar et al., 2011).  

 

The advantage of TFICA and SFICA, with respect to ordinary ICA on the time-series data (temporal 



ICA [TICA] or spatial ICA [SICA]), is that they automatically extract narrowband oscillations from 

broadband data without having to manually specify a frequency band of interest. However, with 

TFICA/SFICA we have mainly found components expressing activation in a single region as opposed 

to connectivity across multiple regions. To specifically address this shortcoming of Fourier-based 

methods, we hypothesized that the resting-state connectivity is manifest in the envelope 

correlations between oscillatory dynamics across brain regions.  

 

Accordingly, in this paper, we address two main questions. First, how to robustly characterize 

electrophysiological resting-state networks using a data-driven method? We propose to apply real-

valued TFICA or SFICA on the broadband Fourier spectra (magnitudes of the Fourier coefficients) 

rather than complex-valued ICA on the complex-valued Fourier coefficients. We call these methods 

envelope SFICA (eSFICA) or envelope TFICA (eTICA). After benchmarking these envelope methods 

against the other ICA-based variants on/using? a realistic simulated dataset, we proceed to address 

the second question: how are MEG resting-state oscillatory networks modulated by stimulation? 

 

2 Materials and methods 

2.1 Simulated data  

We designed a realistic simulated dataset to test the various ICA-based source separation 

algorithms using the following methodology. We pre-selected 10 seed regions and placed a current 

dipole in each of them. The dipoles were oriented normal to the local cortical surface. Source 

strengths were amplitude-modulated sinusoids at pre-selected carrier frequencies. Table 1 gives a 

list of these sources along with their MNI coordinates and carrier frequencies. The amplitude-

modulated time courses, 2 min in duration and sampled at 150 Hz, were produced as follows. 

------Insert Table 1 here (list of source locations and frequencies) ------ 

1. The carrier signal was generated by adding uniformly distributed phase noise to a pure 

sinusoid of a specified frequency (see Table 1). The standard deviation of the phase noise 

was set to 0.05 times the standard deviation of the sinusoid. Phase noise introduces small 

jitter and spreads the spectral peak, thus making the signal to better mimic a cortical 

oscillation. 

2. The envelope was generated as follows. 

1. A spike train (simulating e.g. a thalamic pacemaker signal) was modeled as a random 

binary sequence. We used a temporal sparseness parameter of 0.01 which indicates 

that 1% of the binary sequence was populated by 1's and the rest by 0's. 



2. A basis set of 6 Gaussian functions with an 8-s temporal support was computed. The 

6 standard deviations were integral multiples of 0.27 s, ranging up to 1.6 s. 

3. The spike train was then convolved with each Gaussian function in the basis, and 

these convolved signals were added with random weights (loadings of the basis set) 

constrained to have a unit sum. Together, the sparseness of the spike train and the 

Gaussian basis parameters determined the temporal sparseness of the envelope. 

3. The carrier signal was multiplied by the envelope to generate the amplitude-modulated 

signal. 

4. Pink noise (1/f noise) was added such that the standard deviation of the noise was 10% of 

that of the amplitude-modulated signal. 

5. Finally, the noisy amplitude-modulated signal was constrained to have unit variance. 

Thus, each oscillatory source was specified by 14 parameters: 

1. Location (orientation perpendicular to the local cortical surface)  

2. Carrier frequency of the oscillation 

3. Phase-noise variance 

4. Temporal sparseness of the spike train 

5. The Gaussian basis parameters (basis cardinality, temporal support and spread) 

6. The Gaussian basis loadings (weights to combine basis-convolved spike train) 

7. Pink-noise level 

 

-----Insert Figure 1 here (all source locations & interactions) ----- 

 

Parameters other than location, carrier frequency and the 6 basis loadings remained constant for 

all 10 sources. The parameters were selected so that a simulated source signal visually resembled a 

real MEG signal. 

Importantly, not all sources were independently generated. Rather, we simulated two types of 

interactions between sources: 

1. Envelope correlation (identical envelope but independent carrier signal) 

2. Envelope anticorrelation (inverted envelope and independent carrier signal) 

 

-----Insert Table 2 here (source interactions) ----- 



 

The interactions between the sources were symmetric; see Table 2. 

After the time series of all the sources were generated as described above, an MEG measurement 

on the 306-channel Vectorview sensor array (Elekta Oy, Helsinki, Finland) was simulated by 

computing the corresponding dipolar fields using a single-compartment BEM conductor model 

with 20480 triangles. Finally, noise was added from a real measurement with a similar sensor array 

in the absence of a subject at a level of −10 dB with respect to the simulated MEG data.. 

 

2.2 Real MEG data 

We used the data set presented in our earlier study (Ramkumar et al., 2011). Briefly, we used MEG 

data obtained with the 306-channel Vectorview system from 9 healthy subjects during 10 minutes 

of alert resting (eyes open, fixating on a crosshair) and 12 minutes of naturalistic stimulation. The 

stimuli comprised 6−33 s video clips of faces, hands, and outdoor scenes; recordings of a male 

voice narrating university history and guitar-playing instructions; short pure tones, and bilateral 

tactile stimulation to the fingertips. Each stimulus block alternated with a 15-s rest block. Along 

with MEG, a diagonal electro-oculogram (EOG) was also measured, with one electrode above the 

left eye and another electrode below the right eye. 

 

2.3 Pre-processing 

We pre-processed the data identically as in our earlier work (Ramkumar et al., 2011) with signal 

space separation (SSS) (Taulu and Kajola, 2005) followed by a custom routine for removing 

occasional discontinuities (DC jumps) in the data.  

 

2.4 Source localization of short-time Fourier transforms 

First, we computed 1-s non-overlapping Hamming-windowed short-time Fourier transforms at the 

sensor level. 

For each subject, the brain's cortical surface was reconstructed from an anatomical MRI using 

Freesurfer (http://surfer.nmr.mgh.harvard.edu, Martinos Center for Biomedical Imaging, 

Massachusetts General Hospital). We then projected the complex-valued short-time Fourier 

transformed data to the cortical surface (an average of 5 mm separation between source points for 

simulated data, and 15 mm for real MEG data) using minimum norm estimation (MNE) followed by 

depth weighting and noise normalization (often referred to as dynamic statistical parametric 

http://surfer.nmr.mgh.harvard.edu/


mapping or dSPM; see Dale et al., 2000). We retained only the current estimate in the direction 

normal to the cortical surface. To avoid the disproportionate emphasis on near-DC fluctuations, we 

discarded the first 3 Fourier bins corresponding to 0−3.5 Hz before further analysis. In addition to 

cortical-level STFTs, we also projected the raw sensor-level time series (without computing STFTs) 

to obtain cortical-level time series. 

 

To avoid sensitivity of the inverse modeling method to the idiosyncrasies of the configuration used 

to simulate the data, we used a coarser BEM model (5120 triangles) and a source point set 

excluding exact matches to the simulated source locations to analyze the simulated dataset. 

Further, for the simulated data, the source localization was performed directly on the canonical 

Montreal Neurological Institute (MNI) brain. For real MEG data, we first performed the source 

localization on individual subjects' brains and then projected the cortical-level single-subject data 

to the MNI brain using a surface-based morphing algorithm (Fischl et al., 1999). 

 

2.5 Blind source separation 

Having estimated the space–time–frequency tensor of oscillatory currents at the cortical level, we 

applied six blind source separation methods to identify functionally distinct networks. After 

evaluating the results of these methods on the simulated data, we selected the best performing 

method to apply on real MEG data. 

 

Fourier ICA 

Fourier-ICA, as well as the other methods below, was applied in temporal and spatial form. For 

TFICA and SFICA, we employed the classical noiseless linear mixture model for independent 

component analysis given by X = AS, where X is the complex-valued STFT tensor (time x source 

points x frequency bins) arranged as a matrix. A and S were estimated using the complex-valued 

FastICA algorithm (Bingham and Hyvärinen, 2000). For TFICA, the tensor was arranged as a matrix 

of source points x short-time Fourier transforms. ICA on this matrix maximizes independence in the 

time and frequency domains simultaneously. The rows of the estimated components S give 

independent time–frequency atoms, which are then converted into time courses and power 

spectra by taking the absolute values and averaging over frequency bins and time windows, 

respectively. The absolute values of the columns of the estimated mixing matrix A give the spatial 

maps corresponding to the independent time–frequency atoms. The estimation and interpretation 

was identical to those in our previous work (Hyvärinen et al., 2010) except that we operated here 



at the cortical source rather than at the sensor level. We chose to apply TFICA at the cortical level 

to facilitate a more direct comparison with other methods. For SFICA, the tensor was rearranged 

by concatenating the Fourier coefficients for each source point into a row vector for each time 

window. ICA on this matrix maximizes independence in spatial and frequency domains 

simultaneously. The estimation and interpretation was exactly as in our previous work (Ramkumar 

et al., 2011). 

 

Envelope Fourier-ICA 

For the envelope-based methods, we applied the same linear mixture model after taking the 

absolute value of the Fourier coefficients, resulting in |X| = AS. The arrangements of the tensor X 

for envelope TFICA and envelope SFICA were identical to TFICA and SFICA, respectively. 

 

Ordinary ICA 

For comparison, we also applied ordinary ICA, i.e. instead of decomposing the original tensor, we 

applied temporal and spatial independent component analysis (TICA and SICA) to the 

spatiotemporal data without going to a Fourier representation. 

 

Once the independent components were estimated, we ranked them by the variance of the 

columns of the mixing matrix A. 

 

To reiterate, all the evaluated algorithms comprised two steps: Step 1, a distributed source 

localization method to obtain cortically-constrained current estimates; Step 2, a variant of 

independent component analysis (ICA) to separate the sources into oscillatory networks. We 

investigated the relative merits of 6 variants of ICA: spatial and temporal envelope Fourier ICA, 

spatial (Ramkumar et al., 2011) and temporal (Hyvärinen et al., 2010) complex-valued Fourier-ICA, 

and 2 non-Fourier-ICA methods: ordinary spatial and temporal ICA. We compared the performance 

using 5 different metrics (see Section 2.6). In each case, before applying ICA, we reduced the data 

to K dimensions (K = 25 for the simulated data; K = 40 for the real MEG data) using principal 

component analysis (PCA) followed by whitening.  

 

2.6 Evaluation of algorithms on simulated data 

An ideal method would correctly identify the locations of the sources, their power spectra, and 

their temporal envelopes. It should also capture the interactions between those sources by 



grouping sources belonging to one network into the same component. With these general 

objectives in mind, we focused on temporal and spectral reconstruction, and the effectiveness of 

network detection. We did not emphasize the accuracy of source localization as much as the 

effectiveness of network detection because the accuracy of localization is largely dependent on the 

applied distributed source localization method. 

 

Temporal similarity 

For each component, we computed the temporal correlation coefficients between its estimated 

envelope time course and all true envelopes of the 10 simulated sources. The maximum absolute 

correlation coefficient was considered to indicate the best matching simulated source. To obtain a 

concise summary over components, we then took the mean of this maximum absolute correlation 

to quantify temporal similarity. 

 

Spectral similarity 

We computed the power spectrum of all simulated sources (computed as the mean of the non-

overlapping 1-s Hamming windowed short-time Fourier transforms). Just as for the temporal 

similarity metric, for each component, we computed the correlation coefficients between its 

estimated power spectrum and the true spectra of all 10 simulated sources. The maximum 

absolute value among these 10 correlation coefficients was considered to indicate the best 

matching simulated source. As before, we took the mean of this maximum absolute correlation 

across components to measure the spectral similarity. 

 

Effectiveness of network detection 

To compare the ability to identify networks, we first computed a template for each network as 

follows. We simulated the MEG field produced by each dipolar point source belonging to the 

network, projected the field back to the cortical surface using a dSPM inverse operator (see 

Section 2.4), and then summed up all inverse projections of the sources belonging to the given 

network. Such a template can be treated as a point-spread function of the source, and it factors 

out the localization errors produced by the distributed inverse modeling method. Thus, any 

deviation from this template could be attributed to the effects of the empty room measurement 

noise and the source separation algorithm. We then computed for each of the 4 networks, the 

spatial correlation between the template map and the spatial map of all estimated independent 

components. The component with the largest correlation was considered to best represent the 



network. This correlation coefficient was treated as a metric of network detection and 

subsequently compared across the various ICA methods. A larger score indicates a method that 

better identifies networks. 

 

 

2.7 Analysis of real MEG data 

Based on the results from the simulations (see Section 3.1), we selected eSFICA to be applied on 

resting-state MEG data and studied the dynamics of the estimated components during naturalistic 

stimulation. First, we performed the source-localization of the raw time-series data as well as the 

STFTs using minimum-norm estimation in the same way as in the simulation; see Section 2.4. 

 

Group ICA by two-stage reduction 

We applied ICA to a group-level representation of the resting-state MEG data from 9 subjects, 

obtained by a two-stage reduction (Calhoun et al., 2001). In the first stage, we reduced the data 

from each subject to 40 dimensions using PCA and whitened them. In the second stage, we 

temporally concatenated the reduced data from all subjects, and reduced the dimensionality again 

to 40 using PCA. We then estimated as many components as the dimensionality (i.e. 40) using 

FastICA. 

 

Selecting consistent components from replicates 

We applied ICA as above to resting-state data acquired in a second session from the same 9 

subjects. Independent components found to be sufficiently similar in both sessions were retained 

for further analysis. To set an appropriate threshold for the correlation, we measured this 

correspondence by a statistical test derived from a specific null hypothesis (Hyvärinen 2011; 

Hyvärinen and Ramkumar, in preparation). Under this null hypothesis, we assume that the ICA 

demixing matrix is a random orthogonal matrix; the goal of the statistical test is then to estimate 

how likely two components correspond across sessions by chance. We set a Bonferroni-corrected 

false positive rate of  = 0.05. Only those components that rejected the null hypothesis were 

retained for further analysis. For each such component, we computed the correspondence score 

across sessions as the correlation coefficient between the independent component vectors. 

 

Reconstruction of dynamics during naturalistic stimulation from resting-state spatiospectral filters 

Each independent component estimated from resting-state data can be considered as a linear 



“spatiospectral” filter, which describes an oscillatory network with a certain spatial pattern of 

activity. We applied these filters (one for each component) to the short-time Fourier transform of 

the naturalistic-stimulation data of each subject. 

 

Modulation of amplitude envelope by external stimuli 

How do external stimuli modulate networks identified during rest? We addressed this question for 

each stimulus type, time course (component) and subject, separately as follows. For the 6 different 

types of stimuli, viz. auditory pure tones, natural speech, videos of faces, of hand actions, of 

natural scenes, and periodic tactile stimuli, we computed the modulation depth for each time 

course given as the percentage signal change from a 15-s epoch preceding the onset of the 

stimulus block.  

 

We then performed the following second-level analyses on the modulation depths. First, for each 

component, we performed univariate two-tailed t-tests for each stimulus type to determine the 

modalities for which a component was modulated significantly differently (p < 0.01) from zero. 

Second, to study the specificity of the network to a certain subset of the stimuli, we performed a 

repeated measures analysis of variance (ANOVA) to assess whether there was a difference in 

modulation depths across stimulus types. Components that showed a significant difference of 

modulation depth (p < 0.05) between stimulus types were labeled “Specific”. 

 

Testing for eye-movement artifacts 

To test the possibility that some components were related to eye-movement artifacts, we 

computed correlations between the absolute value of the electro-oculogram (EOG) with the time 

course of each component obtained by applying the spatiospectral filter to the naturalistic 

stimulation data (after downsampling to 1 Hz), separately for each subject. For each component, 

we performed a univariate two-tailed t-test to examine whether its time course was statistically 

significantly (p < 0.05) correlated with the EOG envelope (absolute value of the time course). 

 

Visualization 

Each independent component represents a spatiospectral filter, i.e. the set of Fourier powers 

concatenated across source points. We computed the spatial profile (map) by averaging the 

independent component across the Fourier bins for each source point. The spatial maps were 

thresholded at the 95th percentile. We computed the positive and negative spectral profiles by 



averaging the independent component across source points exceeding the 95th percentile 

threshold in positive and negative directions respectively. Although the independent components 

were calculated from 3.5−75 Hz, the power spectra were only visualized from 3.5−40 Hz because 

the spectra had extremely small values in the range 40−70 Hz. Finally, we plotted the modulation 

depths for each stimulus modality as bars, along with error bars representing the standard errors 

of mean (SEM) across the 9 subjects. 

 

3 Results 

3.1 Results on simulated data 

Table 3 shows the metrics for temporal and spectral similarity and the 4 network detection metrics 

for the 6 different ICA algorithms. Among the two envelope methods, eSFICA performs much 

better in temporal and spectral reconstruction, whereas eTFICA performs slightly better in network 

detection. 

  

----Insert Table 3 here (comparison of methods by metrics)---- 

 

3.2 Results on real MEG data 

Figures 2 and 3 show the estimated resting-state components: their spatial and spectral profiles, as 

well as their modulation by naturalistic stimuli. Based on the modulation depths and the spatial 

profiles, we manually rearranged the components into sensorimotor, medial visual, lateral visual, 

auditory, higher-order sensorimotor, intrinsic, and orbitofrontal components. The grouping is only 

approximative, and could be contested for several components. However, instead of creating a 

'miscellaneous' category for such components, we prefer to assign each component to the closest 

cluster. In the following, we make some remarks about the components. 

 

----Insert Figures 2-3 here (list of all RSNs)---- 

 

Sensorimotor components 

We found two unilateral ~10-Hz, two unilateral ~15-Hz, and one bilateral ~20-Hz sensorimotor 

components (Figure 2, top panel) spanning the primary somatosensory and motor cortices, as well 

as the supplementary motor areas (SMA): these were statistically significantly modulated by tactile 

stimuli alone. 

 



Medial visual components 

We observed one bilateral and two lateralized medial parieto-occipital components at ~10 Hz (see 

Figure 2, middle panel). These were modulated non-specifically by speech, faces, hands, scenes, 

and tactile stimuli. The bilateral component peaked slightly below 10 Hz, whereas the lateralized 

components peaked slightly above 10 Hz. 

 

Lateral visual components 

We also observed several components at ~8–15 Hz with spatial maxima over the ventral temporo-

occipital pathways (Figure 2, bottom panel). Most of these components were individually 

modulated by at least one visual stimulus category. Hence we classified them as higher-order visual 

components. 

 

Auditory components 

We found one ~8-Hz component with bilateral maxima in the auditory cortices, but this 

component was modulated by speech, faces and hands. In addition, we found two ~15-Hz 

components with spatial maxima in the left and right auditory cortex and superior temporal cortex, 

which were modulated by speech and tactile stimuli (see Figure 3, top panel). The left hemisphere 

component was also significantly correlated (p < 0.05; r = 0.14; mean across subjects) with the EOG 

envelope. 

 

Higher-order sensorimotor components 

We found several ~12–20-Hz components with local maxima in the primary and secondary 

sensorimotor areas, and posterior parietal cortices (Figure 3, second panel). However, unlike the 

sensorimotor components that were modulated only by tactile stimuli, these components were 

modulated non-specifically by speech, faces, hands, places, and tactile stimuli. 

 

Intrinsic components 

We found two lower-frequency (< 5 Hz) components with spatial maxima in the posterior 

cingulate, mid-cingulate and parts of the orbitofrontal cortex (Figure 3, third panel). We found 

another low-frequency component in the right anterior inferior temporal cortex that was not 

significantly modulated by any stimulus category. We classified all these components as intrinsic 

because they exhibit either weak or no modulation to external stimuli. However, the first and the 

third intrinsic components were weakly but significantly (p < 0.05) correlated with the EOG 



envelopes (r = 0.08 and 0.06 respectively; mean across subjects). 

 

Orbitofrontal components 

We found three components with large spatial maxima in the orbitofrontal cortices alone (Figure 3, 

bottom panel). Two of these three components showed the largest envelope correlation (r = 0.17 

and 0.15, respectively; mean across subjects) with the absolute value of the EOG envelopes, and 

the correlations were statistically significantly (p < 0.05) different from zero. 

 

4 Discussion 

4.1 Comparison of the algorithms 

From the performance metrics of the various algorithms, some clear patterns emerge. First, the 

spatial Fourier methods seem to be better at estimating the temporal profiles of the sources, 

whereas the temporal Fourier methods excel at identifying the corresponding networks. This 

observation implies that the mixing matrices are more accurately estimated than the independent 

components, suggesting the added value of applying both spatial and temporal source separation 

methods. It is possible that a hybrid spatiotemporal method, e.g. the one proposed by Stone et al. 

(2002) for fMRI data, would be able to combine the advantages of both types of methods. The 

non-Fourier-based methods (SICA and TICA) are poor at estimating networks. The observation 

could be explained by the fact that these methods impose either temporal or spatial sparseness, 

whereas most networks seem to exhibit narrowband oscillations and would thus benefit from an 

imposition of spectral sparseness. 

 

4.2 Identified resting-state networks  

Our results demonstrated the ~10- and ~20-Hz components of the rolandic sensorimotor mu 

rhythm (Hari and Salmelin, 1997). Robust inter-hemispheric correlations in the sensorimotor 

network have been observed in fMRI (Biswal et al., 1995) and in intracranial recordings (Nir et al., 

2008). It is interesting to note that the ~20-Hz component, but not the ~10-Hz components, 

showed a bilateral spatial profile. Early MEG studies indicate that the ~20-Hz oscillation is 

generated precentrally and appears more related to motor than somatosensory processing 

whereas the ~10-Hz oscillation is postcentral and associated with processing of tactile information, 

although both rhythms are modulated by movement and tactile stimulation (for a review see Hari 

and Salmelin, 1997). Thus, understanding the inter-hemispheric coupling of these two 

spontaneous rhythms would be useful in further elucidating their role in sensorimotor processing. 



 

The bilateral medial parieto-occipital component was modulated by speech and visual stimuli but 

not by tactile stimuli, whereas the unilateral component was modulated by tactile stimuli as well. 

The spatial maxima correspond to previously reported generators of the classical ~10-Hz parieto-

occipital alpha rhythm. Most of the identified higher-order visual components in the 8−15-Hz 

range had the sources in the right lateral temporal lobe. 

 

The bilateral auditory component showed a peak at ~8 Hz which corresponds to the tau rhythm 

reported in an early MEG study (Tiihonen et al., 1991). In addition to speech, this component was 

modulated by videos of faces and hands as well. The left and right lateralized temporal lobe 

components were modulated by speech and tactile stimuli at ~12 Hz. Spontaneous rhythms in the 

auditory cortex and speech production areas have been linked to speech production and 

perception networks along with frequency-specific lateralization (Giraud et al., 2007). However, we 

did observe any differences in the power spectra between the left and right hemisphere 

components. 

 

The higher-order sensorimotor components showed peaks at ~10 and ~20 Hz, and were modulated 

not only by tactile stimuli, but also by visual and speech stimuli. Given that the video clips 

contained pictures of faces and hand actions, and some speech segments described instructions 

for guitar fingering, the sensorimotor suppression to these stimulus categories is not unexpected.  

 

Among the intrinsic components, the second and third (at low frequencies) are slightly lateralized 

and appear to represent the fronto-parietal attention networks. Unlike Brookes et al. (2011), we 

did not find components describing the entire default mode network. We also could not find the 

cerebellar network that Brookes et al. (2011) identified because we defined our source points on 

the cortical surface alone.  

 

The putative orbitofrontal components seem to be related to eye-movement artifacts. This finding 

is not surprising considering that earlier studies have localized eye-blink artifacts to the orbit 

(Antervo et al., 1985). Although the correlations between EOG signal envelopes and the 

component envelope time courses are low, and the variance of the entire component cannot be 

explained by the EOG signals alone, caution must be exercised while interpreting these 

components as brain activity. 



 

4.2 Methodological strengths and caveats 

Advantages of eSFICA 

First, while TFICA or SFICA are devised to reveal long-range phase synchrony, we did not find such 

components when applying these methods to either simulated or real data (Hyvärinen et al., 2010; 

Ramkumar et al., 2011). One possible explanation is that phase synchrony was only intermittent 

and thus was not robustly detectable with exploratory methods over time scales of minutes  

Indeed, analysis in earlier studies reporting long-range phase-synchrony has typically been carried 

out trial by trial and over a time scale of hundreds of milliseconds to a few seconds (see e.g. Palva 

et al., 2009; Palva et al., 2010). 

 

By contrast, eSFICA was able to find components with spatial maps showing bilateral networks 

such as the sensorimotor network, and a subset of the default mode network. Due to the real-

valued nature of the method, the captured interactions are envelope correlations and they 

disregard phase interactions. Second, since the ICs are zero-mean, it is possible to find envelope 

anti-correlations using this method. Third, compared with the method applied by Brookes et al. 

(2011), our method is automatically able to select relevant narrow frequency bands in a data-

driven manner. As a result, the method can potentially find cross-frequency interactions within a 

single network. 

 

Potential biases to the simulated data 

Although we designed the simulated data set to closely mimic real MEG data, some artificial biases 

may still be present. For instance, increasing the temporal sparseness of the source time courses 

favors temporal ICA methods. To reduce this possible bias, we adjusted the temporal sparseness 

parameter so that the simulated time courses visually resembled real MEG data.  

Potential weaknesses in the group analysis 

In this paper, we have adopted the standard approach of temporal concatenation across subjects 

(Calhoun et al., 2001; Beckmann and Smith, 2005). However, individual application of ICA on 

single-subject data, followed by post-hoc testing of consistency (Esposito et al., 2005; Langers, 

2010; Hyvärinen, 2011) would make fewer assumptions on the similarity of statistical properties of 

the data from different subjects. Optimizing the group analysis is certainly an avenue for future 

methodological development. 

 



5 Conclusion 

We developed a data-driven method to characterize resting-state oscillatory brain networks at the 

cortical level across subjects. The identified RSNs were in agreement with those previously 

reported in the fMRI and MEG literature. Further, we showed that a majority of these RSNs were 

consistently modulated by external stimulation, while the ‘intrinsic’ networks remained seemingly 

unaffected by stimulation. 
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8 Figure Captions 
Figure 1. Top: Locations of the simulated oscillatory current sources on an inflated and flattened 

brain surface. Bottom: Envelopes and power spectra of each source. Sources 1−4 constitute 

network #1, source 5 network #2, sources 6−8 network #3, and sources 9−10 network #4. 

 

Figure 2. First 3 component groups: eSFICA spatiospectral filters obtained from resting-state data 

(left and middle panels) used to interrogate brain dynamics during natural stimulation (right 

panel). Left: The spatial profiles obtained by averaging the independent component across the 

Fourier bins. The maps are thresholded at the 95th percentile. Middle: The (positive and negative) 

spectral profiles are obtained by averaging the independent component across source points 

exceeding the 95th percentile threshold in positive and negative directions, respectively. The inset 

shows consistency of the spatiospectral filter across two resting-state sessions as measured by 

Pearson’s correlation coefficient. Right: The temporal profile is described by the modulation depths 

for each stimulus category averaged across subjects. Error bars show standard errors of mean. A 

star indicates that the component is modulated significantly differently (p < 0.05; uncorrected) 

from zero. The label “Specific” suggests that there are statistically significant differences (p < 0.05) 

between effect sizes of different stimulus categories. We manually ordered the components 

according to the dominant modality as sensorimotor, medial visual and lateral visual components. 

 

Figure 3. Subsequent 4 component groups: eSFICA spatiospectral filters obtained from resting-

state data (left and middle panels) used to interrogate brain dynamics during natural stimulation 

(right panel). Left: The spatial profiles obtained by averaging the independent component across 

the Fourier bins. The maps are thresholded at the 95th percentile. Middle: The (positive and 

negative) spectral profiles are obtained by averaging the independent component across source 

points exceeding the 95th percentile threshold in positive and negative directions, respectively. The 

inset shows consistency of the spatiospectral filter across two resting-state sessions as measured 

by Pearson’s correlation coefficient. Right: The temporal profile is described by the modulation 

depths for each stimulus category averaged across subjects. Error bars show standard errors of 

mean. A star indicates that the component is modulated significantly differently (p < 0.05; 

uncorrected) from zero. The label “Specific” suggests that there are statistically significant 

differences (p < 0.05) between the effect sizes of different stimulus categories. We manually 

ordered the components as auditory, higher-order sensorimotor, intrinsic components and 

artifacts. 



9 Tables 

Table 1: Simulated sources. Regions, Montreal Neurological Institute (MNI) co-ordinates and carrier 

frequencies. 

Source index Region MNI Coordinates (x y z) (mm) Frequency (Hz) 

1 Left central sulcus (MI)    −53.2    3.4    35.2 19.5 

2 Left central sulcus (SI)   −46.5    13.3   41.9 12.0 

3 Right central sulcus (MI)    40.7   −16.9   55.5 19.2 

4 Right central sulcus (SI)    49.3   −17.2  37.0 11.0 

5 Right posterior parietal operculum (SII)    58.0   −35.4   28.4 19.0 

6 Left calcarine sulcus    −25.9  −71.8   7.4 8.0 

7 Right calcarine sulcus    12.4  −89.7   4.0 8.5 

8 Left lateral middle temporal area (MT)   −42.9  −52.7   5.4 12.1 

9 Left posterior cingulate cortex (PCC)   −5.5  −48.1   30.1 7.0 

10 Left medial prefrontal cortex (MPFC)   −41.5   69.0   64.6 6.0 

 



Table 2: Interaction between source envelopes. Envelopes are either correlated (+) or anti-

correlated (−). While the envelopes are strongly correlated, the amplitude-modulated timecourses 

are completely uncorrelated. Sources 1−4 constitute network #1, source 5 constitutes network #2, 

sources 6−8 constitute network #3, and sources 9−10 constitute network #4.  

 

 1 2 3 4 5 6 7 8 9 10 

1  + + +  − − −   

2 +  + +  − − −   

3 + +  +  − − −   

4 + + +   − − −   

5           

6 − − − −   + +   

7 − − − −  +  +   

8 − − − −  + +    

9          + 

10         +  

 



Table 3: Comparison of the six source separation algorithms. Each column represents one method. 

The rows the metric describing the overall temporal similarity, overall spectral similarity, and the 

detectability of an individual network (see Section 2.6 in the text for details). The best performing 

algorithm for each criterion is highlighted. The last two rows give the mean of network 

detectability and the grand mean score across all metrics. 

 Spatial Temporal 

Metric eSFICA SFICA SICA eTFICA TFICA TICA 

Temporal similarity 0.50 0.50 0.56 0.15 0.32 0.30 

Spectral similarity 0.47 0.76 0.79 0.20 0.68 0.52 

Detection of 

network 1 

0.74                 0.60 0.03 0.76 0.67 0.03 

Detection of 

network 2 

0.67                 0.49 0.03 0.81 0.67 0.03 

Detection of 

network 3 

0.75                 0.45 0.04 0.77 0.35 0.03 

Detection of 

network 4 

0.75                 0.49 0.02 0.71 0.67 0.02 

Detection of 

networks (mean) 

0.73 0.51 0.03 0.77 0.59 0.03 

Grand Mean Score 0.60 0.59 0.46 0.37 0.53 0.29 

 



1
2 3

4
56 7

8

9
10

1

2

3

4

5

6

7

8

9

10

35 Hz3.5120 s0

#1

#2

#3

#4



0.75

0.73

0.66

0.55

0.51

0.75

0.74

0.69

0.81

0.69

0.68

0.66

0.60

0.59 Specific

Spatial Pro�le Spectral Pro�le Temporal Pro�le
Se

ns
or

im
ot

or
M

ed
ia

l V
is

ua
l

La
te

ra
l V

is
ua

l

0 10 20 30 40 HzBeeps Speech TactileHandsFaces Places



0.67

0.54

0.70 Specific

0.68

0.61

0.56 Specific

0.50 Specific

0.49

0.75

0.70

0.66

0.89

0.79

0.52

Spatial Pro�le Spectral Pro�le Temporal Pro�le
Au

di
to

ry
H

ig
he

r-
or

de
r s

en
so

rim
ot

or
In

tr
in

si
c

A
rt

ifa
ct

ua
l

0 10 20 30 40 HzBeeps Speech TactileHandsFaces Places

0.76 Specific

0.73


	P4_Ramkumar2012_Neuroimage_Submitted.pdf
	Figure01
	Figure02
	Figure03



