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Abstract: Rhythmic brain activity, measured by magnetoencephalography (MEG), is modulated during
stimulation and task performance. Here, we introduce an oscillatory response function (ORF) to predict
the dynamic suppression-rebound modulation of brain rhythms during a stimulus sequence. We
derived a class of parametric models for the ORF in a generalized convolution framework. The model
parameters were estimated from MEG data acquired from 10 subjects during bilateral tactile stimulation
of fingers (stimulus rates of 4 Hz and 10 Hz in blocks of 0.5, 1, 2, and 4 s). The envelopes of the 17-23 Hz
rhythmic activity, computed for sensors above the rolandic region, correlated 25%—-43% better with the
envelopes predicted by the models than by the stimulus time course (boxcar). A linear model with sepa-
rate convolution kernels for onset and offset responses gave the best prediction. We studied the general-
izability of this model with data from 5 different subjects during a separate bilateral tactile sequence by
first identifying neural sources of the 17-23 Hz activity using cortically constrained minimum norm esti-
mates. Both the model and the boxcar predicted strongest modulation in the primary motor cortex. For
short-duration stimulus blocks, the model predicted the envelope of the cortical currents 20% better than
the boxcar did. These results suggest that ORFs could concisely describe brain rhythms during different

stimuli, tasks, and pathologies. Hum Brain Mapp 31:820-834, 2010.
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INTRODUCTION

Rhythmic activity is observed in electroencephalo-
graphic (EEG) and magnetoencephalographic (MEG)
measurements of brain function at characteristic frequen-
cies and brain regions. Spontaneous rhythms are promi-
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nent particularly in the absence of external stimuli. The
rhythms are perturbed from their resting level during
processing of sensory stimuli, task performance, changes
in alertness, or brain disease, and hence may be
considered as signatures of information processing in the
brain.

The rolandic mu rhythm is suppressed during motor
action, motor imagery, and somatosensory stimulation.
Both the 10-Hz and the 20-Hz frequency bands of the mu
rhythm return to baseline levels after the stimulation or
task ends; however, some characteristic differences have
been reported. First, the 20-Hz component rebounds ear-
lier and faster than the 10-Hz component. Second, the
source of the 20-Hz component reflects the moved body
part according to the somatotopy in the primary motor
cortex, whereas the 10-Hz component does not—rather, it
arises from the hand area of the somatosensory cortex
[Salmelin and Hari, 1994; Salmelin et al., 1995].
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The mu rhythm has been used to probe the state of the
sensorimotor system under various perceptual states; for
instance, mu suppresses weakly during motor imagery
[Schnitzler et al., 1997] and observation of motor action
[Hari et al., 1998]. Precentral 20-Hz and postcentral 10-Hz
EEG rhythms seem to correlate inversely with the blood-
oxygen-level dependent (BOLD) signal [Ritter et al., 2009].
Different levels of correlation between different EEG
rhythms and resting-state networks of BOLD activity have
also been reported [Mantini et al., 2007]. The reactivity of
various rhythms has thus become increasingly important
in the study of human cognitive function.

Although several studies have already related various
tasks and stimuli to specific modulations of brain rhythms,
the available descriptions are largely qualitative. To unify
this information, a quantitative, parametric model of the
relationship between the environment and brain rhythms is
essential. With such a model, it would be possible to predict
the responses of the brain rhythms to novel events, compare
the responses to different events, and quantify these differ-
ences in terms of the model parameters. Such a parametric
model would also facilitate a hypothesis-driven approach to
understanding the functional significance of the rhythmic
activity, and it could serve as a benchmark against which
future quantitative models could be compared.

Early generative models of neural population dynamics
(neural mass models) [Lopes da Silva et al., 1974; Zetter-
berg, et al. 1978] serve as precedents for interpretation of
the generative process of brain rhythms and for the pre-
dictive modeling of their state as a function of stimulus or
task. The neural mass model of Jansen and Rit [1995]
describes the generation of the alpha rhythm by means of
interacting populations of pyramidal neurons, excitatory
interneurons, and inhibitory interneurons. In this work,
the transformation of synaptic input into postsynaptic
potentials was modeled by a linear convolution, with dif-
ferent impulse response functions for excitatory and inhib-
itory synapses. For each neuronal population, the net
postsynaptic potential was transformed to an average fir-
ing rate by a sigmoid function. The authors showed that
with uniformly distributed white noise as the external
input to the pyramidal neurons, the time course of the av-
erage of postsynaptic potentials of the pyramidal neuron
population resembled the alpha rhythm observed in EEG
recordings. A variant of this model has been proposed by
David and Friston [2003] as a building block for dynamic
causal modeling (DCM), a framework for discovering
causal  relationships  between  different  neuronal
populations.

These neural mass models have been typically genera-
tive (where the goal of modeling is to understand the bio-
physical process by which the rhythm of interest is
generated) as opposed to predictive (where the goal is to
predict the state of the rhythm under specific conditions).

The neural mass models have largely focused on the
alpha rhythm whereas the literature on generative models
of the mu rhythm is more sparse. Recently, Jones et al.

[2007a] proposed a biophysically realistic laminar network
model of the primary somatosensory cortex (SI) to predict
the evoked MEG response to tactile stimulation. On the
basis of simulations, the same authors [Jones et al., 2007b]
suggested that the mu rhythm may be produced by feed-
forward/feedback drive from/to the thalamus to/from the
somatosensory cortical regions at 10 Hz. This bottom-up
model, similar to the generative neural mass models,
requires prior knowledge and assumptions about the
underlying generative process.

Black-box models (also referred to as data-driven or
phenomenological models) ignore the biophysical proc-
esses underlying the observed rhythmic activity, and being
relatively assumption-free they are sometimes useful for
prediction. Such a parametric model of the event-related
modulations of the spectral features of the mu rhythm was
proposed by Krusienski et al. [2007] to provide a tool for
continuous tracking of the EEG mu rhythm for a brain-
computer interface.

Altogether, most of the literature on modeling of electro-
physiological brain rhythms concerns descriptive rather
than predictive models. To complement this body of work,
here we introduce a framework for a predictive model of
envelope dynamics with potential applications in locating
cortical generators of brain rhythms, as well as in charac-
terizing their dynamics as a function of stimuli, and sub-
jects in health and disease. Specifically, we introduce a
predictive model of the envelope dynamics of the 20-Hz
component of the rolandic mu rhythm. The inspiration for
the model comes from the analysis of functional magnetic
resonance imaging (fMRI) data, where a linear transforma-
tion employing a hemodynamic response function (HRF)
is used to predict the time course of the hemodynamic
response to a stimulus or task. Appropriately, the model
presented here employs a transformation called the oscilla-
tory response function (ORF). Since the rebound of the en-
velope above the resting level is associated only with the
end of the stimulus or task, the reactivity of the 20-Hz
mu-rhythm envelope should be considered nonlinear.
Therefore, we employed generalized convolution
[Schetzen, 2006] for modeling the envelope; within this
framework, any nonlinear, time-invariant system can be
modeled. We obtained the model parameters using a
supervised machine learning approach, specifically by
minimizing the mean-squared prediction error within a
training dataset obtained from healthy subjects, consisting
of known stimulus sequences as inputs and envelopes of
the mu rhythm as outputs. The model parameters were
then used to predict the envelope dynamics in an inde-
pendent testing dataset.

MATERIALS AND METHODS
Subjects

Fourteen healthy adults (six females, eight males; mean
age, 28 years; range, 22-41) participated in the study after
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written informed consent. Of these, ten subjects partici-
pated in the training paradigm and five in the test para-
digm (one subject taking part in both). The recordings
were approved by the Ethics Committee of the Helsinki
and Uusimaa Hospital District (protocols No. 9-49/2000
and No. 95/13/03/00/2008), granted to N. Forss and R.
Hari.

Stimuli

For both training and testing datasets, tactile stimuli
were delivered using pneumatic diaphragms at the finger-
tips of both hands. The stimuli for the test dataset were
designed to be informative about the generalizability of
the estimated model as a function of stimulus parameters.
We employed a design with alternating stimulus and rest
blocks (see Fig. 1) and bilateral stimulation to engage the
somatosensory cortex of both hemispheres. Within a stim-
ulus block, the tactile pulses were presented in a random
order under the constraint that homologous fingers were
stimulated simultaneously. The timing of stimulus deliv-
ery was controlled using Presentation Software (version
0.81, Neurobehavioral Systems Inc., Albany, CA, USA). A
2-min recording without a subject was conducted after the
experiment for the estimation of noise statistics. The
experiments for model training and testing differed in
terms of the number of fingers stimulated, the duration of
the stimulus blocks, and the frequency of the stimulus
trains, as described below.

Experimental Design for Model Training

The session consisted of two 13-min sequences of pneu-
motactile stimulus trains. In a single train, the stimuli
were given at either 4 Hz (Sequence 1) or 10 Hz (Sequence
2) as shown in Figure 1. All fingers except the thumb were
stimulated. Each sequence consisted of 25 stimulus blocks
of four different durations (0.5, 1, 2, and 4 s), occurring in
a random order. The rest blocks were of five different
durations (5.0, 5.5, 6.0, 6.5, and 7.0 s).

Experimental Design for Model Testing

This session comprised one 11-min sequence with pneu-
motactile stimuli at 4 Hz. Each stimulus sequence com-
prised 40 trials, each of them with a short stimulus block
(1 s), a rest block (5 s), a long stimulus block (6 s), and
another rest block (5 s). Only the index and middle fingers
were stimulated (see Fig. 1).

Measurements

MEG data were acquired with a 306-channel MEG sys-
tem (Elekta Neuromag Oy, Helsinki, Finland), bandpass-
filtered to 0.03-200 Hz and digitized at 600 Hz. The train-
ing and testing datasets were acquired at different mea-

surement sites at the Helsinki University of Technology;
the training dataset in a three-layer shielded room and the
testing dataset in a two-layer shielded room equipped
with active compensation.

During the MEG recording, four small coils, whose loca-
tions had been digitized with respect to anatomical land-
marks, were briefly energized to determine the subject’s head
position with respect to the MEG sensors. For the training
dataset, the head position was monitored continuously dur-
ing the measurement, whereas in the testing paradigm, the
head position was measured only in the beginning of each
sequence. Anatomical MRIs were obtained using a 3-T Gen-
eral Electric Signa MRI scanner (Milwaukee, WI) at the AMI
Centre of the Helsinki University of Technology.

Generalized Convolution Models
The Volterra series

The output y(t) of a linear time-invariant (LTI) system
can be modeled as a convolution of an input u(t) with an
impulse response function (IRF) k(t), defined as the system
output to an infinitesimally brief input (f). Linear convo-
lution can be extended to a generalized convolution frame-
work in which any nonlinear, time-invariant system can
be expressed as an infinite series of functionals (the Vol-
terra series) constructed by multiple convolutions of the
input [Schetzen, 2006]. For the input u(t), the output y(t) is
given by the Volterra series as
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where k,, is called the m-th-order Volterra kernel, and k is
a constant which captures the time-invariant offset. The
first-order kernel k; represents the linear unit impulse
response of the system, similar to the IRF in the linear con-
volution framework. Similarly, the second-order kernel k,
is a two-dimensional function of time and represents the
system response to two unit impulses applied at different
points in time. In practice, the Volterra series is often trun-
cated to the second order because the amount of data
required to estimate each higher-order kernel scales expo-
nentially with the model order [Victor, 2005].
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Figure I.

Stimulus presentation for model training (above) and testing
(below). Both sequences comprised blocks of tactile stimuli
(presented either at 4 or 10 Hz for model training, and at 4 Hz
for model testing), interspersed by rest periods. The stimuli
were delivered to fingers 2-5 in the training set and to fingers
2-3 in the testing set. [Color figure can be viewed in the online
issue, which is available at www.interscience.wiley.com.]

Generalized Convolution and the
mu-Rhythm Envelope

The discrete time representation of the univariate model,
with the Volterra series truncated to the second order, is
given by

y(n) =ko+ Y k(m)u(n —m)

+ 3> ka(my,my)u(n —myu(n —my) + & (2)

my My

The input u(n) is a step function encoding stimulus
onset and offset (boxcar). The output y(n) is the envelope
of the mu rhythm. A residual term & represents the model-
ing error due to series truncation. By extension, the Vol-
terra series can also be applied to bivariate models, i.e., to
models with two inputs. The output of the second-order
Volterra series expansion for a bivariate model

y(t) ~ky + / oy (1) (£ — 11)dy + / ko (12)102 ( — T2)d,
+ / / ku1 (11, T2)ua (F — 11)ua (F — T2)drydy
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where the first two integrals represent the linear part of the
response to inputs u;(f) and u,(t). The next two integrals rep-
resent the self terms of the nonlinear part of the response,
i.e. the response due to the interaction of inputs with them-
selves. The last integral represents the cross term, i.e. the
response due to the interaction between the two inputs.

The rationale for adopting a bivariate model was as follows.
The reactivity of the mu rhythm suggests that the stimulus
onset and offset events are processed differently, because the
onset is followed by a suppression that continues during the
stimulation, and the offset is followed by a rebound above the
prestimulus level. Accordingly, a model with two inputs was
adopted: u;(f), a boxcar function encoding stimulus onset and
offset as in the univariate model, and u5(f) an impulse func-
tion encoding stimulus offset alone; and one output y(f) repre-
senting the mu rhythm envelope. The impulse function u5(t)
may be defined in terms of the step function u4(f) as

wit) = { -S40} @

where {.} denotes half-wave rectification.
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Figure 2.
The first three discrete Laguerre basis functions with a 2-s sup-
port (above). The Laguerre pole oo = 0.8. The condition number
and efficiency (see text) of the design matrix X, plotted as a
function of o (below). [Color figure can be viewed in the online
issue, which is available at www.interscience.wiley.com.]
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Further, it was assumed that for the applied stimulus
train durations and inter-train intervals, the successive
onsets (offsets) do not interact, i.e. that the rebound after a
stimulus train depends on the duration of the current
stimulus train only; not on the previous stimulus trains.
Accordingly, we dropped the self terms in Eq. (3). The dis-
crete-time representation of the resulting bivariate model
is thus given by

ko-i—Zkl Zkz

+ szlz my, my)ur(n — my)up(n —my) + & (5)

nmy My
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where k;(m) is called the onset kernel, k,(m) the offset ker-
nel, and ki,(mq, m,) the interaction kernel. We estimated
both the univariate [Eq. (2)] and bivariate [Eq. (5)] models
from the training dataset.

Estimation of Volterra kernels

A parametric approach to estimate the Volterra kernels
was first suggested by Wiener [1958] and has since
undergone a number of modifications [Marmarelis, 1993;
Watanabe and Stark, 1975]. The essential idea is to
expand the kernels as functions of an orthonormal basis,
so that it is sufficient to estimate the coefficients of the
basis functions, thus reducing the number of model
parameters.

The discrete-time Laguerre basis set (see Fig. 2) is
ideally suited to capture the morphology of the mu-
rhythm envelope. The Laguerre basis [Back and Tsoi,
1996; Broome, 1965; Marmarelis, 1993] is also favorable
because of its parsimony; the entire basis set is com-
pletely specified by a single parameter o. The i-th dis-
crete-time Laguerre function is computed in the closed

form as
)0

m>0,0<a<1

hi(m) = o™=/2(1

1/2 Z
(6)

where « is the discrete-time Laguerre parameter, or the
Laguerre pole, which determines the rate of the exponen-

tial decay of the functions. As a general principle, the
number of basis functions must be large enough to suffi-
ciently span the signal space and, at the same time, small
enough to minimize over-learning and keep the estimation
numerically feasible.

The kernels are represented as Laguerre expansions
with coefficients ¢y, ¢1, ¢, ¢35 as

ko =Cp

L

=> ci(ihi(m)
i=1
L

= Zcz(i)h,(m)

where L is the number of Laguerre basis functions. By
substitution, Eq. (5) reduces to
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where
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Eq. (8) can be written in a matrix form as Y = XB,
where
BT = [Co Cl(l).., C1 (L) C2(1) C2(L) C3(1,1) C3(L,L)} (9)
and
sz(l) .X11(1)X21(1) le(l)XZL(l)
sz(z) X11(2)X21(2) le(Z)XZL(Z)
(10)
sz(N) Xll(N)le(N) le(N)xZL(N)
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Figure 3.
Envelopes of the 17-23 Hz signals at the representative left hemisphere channels used for model
estimation. Data from all 10 subjects (SI-S10), for both stimulus presentation rates (4 Hz and
10 Hz) and all four stimulus durations (0.5, I, 2, and 4 s) are shown.

The coefficients are then obtained as the least-squares
estimate of f3,

B = (X' WX) "' XTWY (11)
where W is a diagonal matrix with entries as reciprocals of
the data variance. This approach closely follows the least-
squares estimation proposed by Marmarelis [1993]. For an
adaptation of the technique to estimate the hemodynamic
response function from fMRI data, see Lee et al. [2004].

Data Analysis

Estimation of sensor- and source-space envelopes
of the mu rhythm

The continuous, raw MEG data were low-pass-filtered
to 50 Hz, and downsampled to a sampling rate of 150 Hz.
External interference was removed and head movements
were compensated for using the signal space separation
(SSS) method [Taulu and Kajola, 2005]. For one subject,
whose recordings contained slowly varying artifacts, the

temporal extension (tSSS) of the method was applied
[Taulu and Simola, 2006]. Next, the signals were band-lim-
ited to 17-23 Hz (the typical range of the 20-Hz compo-
nent) using a Butterworth FIR filter with —3-dB cut-offs at
15.4 Hz and 24.6 Hz, a transition band of 4.4 Hz, and a
stopband attenuation of —85 dB. Given that the envelopes
vary slowly compared with the signals, the data were fur-
ther down-sampled to 50 Hz for computational feasibility
of the modeling process. From the training dataset, the in-
stantaneous amplitude was computed as the magnitude of
the complex Hilbert analytic signal. Figure 3 shows the
envelopes at representative gradiometer channels, selected
individually for the largest mu rhythm modulation, for all
10 subjects over the left rolandic region. Representative
channels were also individually selected from the right
rolandic regions in an identical manner (not shown). A
clear suppression-rebound oscillatory response was seen
in all subjects, except in S1, S4, and S7. These sensor-space
envelopes were used for estimation of model parameters
from the training set.

The test dataset was preprocessed identically as the
training dataset, except that the cortical current envelopes
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were further down sampled to 10 Hz. The envelopes of
the cortical sources were estimated using a cortically con-
strained ¢, minimum norm estimate as follows. Individual
anatomical MRIs were segmented for the cortical mantle
using the Free Surfer software package (http://surfer.-
nmr.mgh.harvard.edu, Martinos Center for Biomedical
Imaging, Massachusetts General Hospital) and a source
space with a 15-mm spacing between the adjacent sources
along the cortical surface was defined. A forward solution
was computed for each source point using a boundary ele-
ment conductor model for the cranium and taking into
account the position of the head with respect to the MEG
sensors. Noise covariance was estimated using the 2-min
recording without a subject at the end of each session. No
regularization was applied to the noise covariance. A
depth-weighted, minimum-norm inverse operator [Dale
et al,, 2000] was computed with a loose orientation con-
straint favoring source currents perpendicular to the local
cortical surface by a factor of 2.5 with respect to the cur-
rents along the surface [Lin et al., 2006]. Using the inverse
operator, the Hilbert analytic signal was projected on to
the cortex. Finally, the cortical envelope was computed by
taking the magnitude of the complex-valued analytic sig-
nal at each cortical location. These source-space envelopes
from the test set were used to validate the model esti-
mated from sensor-space envelopes in the training set. It is
sufficient to estimate the model parameters from sensor-
space signals, because the minimum-norm inverse projec-
tion is linear and thus preserves the essential spatiotempo-
ral characteristics of the envelope.

Model fitting

Both univariate and bivariate models were fit to the
training dataset. For the bivariate model, both a linear
(Ist-order Volterra expansion) model involving only the
onset and offset kernels, and a nonlinear (2nd-order Vol-
terra expansion) model including the interaction kernel,
were fit to the envelope. For each stimulus train rate, enve-
lopes were averaged across trials for each stimulus dura-
tion using a 2-s prestimulus and a 2-s poststimulus
baseline. Trials with MEG signals exceeding 3 pT/cm, and
EOG signals exceeding 100 pV, apparently caused by non-
physiological artifacts and eye blinks, were rejected. A lin-
ear trend (across each stimulus block) was removed from
the data prior to averaging. Blocks of each duration and
stimulus rate were averaged together and these averages
were concatenated. For each stimulus rate, a representative
rolandic channel was selected by visual inspection from
both the left and the right hemisphere for modeling.
Supporting Information Figure S1 shows data from subject
S3.

To avoid temporal discontinuities in the model output
at the stimulus onsets and offsets, the inputs to the model
were smoothed using a 200-ms moving average kernel.
For the basis set, three Laguerre functions (L = 3) were
used, thus requiring one parameter for the baseline level,

L = 3 parameters for the onset kernel, L = 3 parameters
for the offset kernel and L(L+1)/2 = 6 parameters for the
interaction kernel. In addition, the hyperparameter o was
allowed to vary freely. Thus, 11 parameters were
employed for the univariate model, 14 for the nonlinear
bivariate model, and 8 for the linear bivariate model. The
temporal support of the kernels was chosen to be 2 s (100
samples). The choice of the number of basis functions was
practically motivated: to restrict the parameters to as few
as possible, and to keep the design matrix sufficiently
high-rank, so that parameter estimation was numerically
feasible. Test runs on MEG data from a single subject sug-
gested that L = 2 was too few to capture the morphology
of the mu reactivity, while L = 4 resulted in a ill-condi-
tioned design matrix. In this sense, L = 3 seemed to be an
optimal choice.

Theoretically, although an orthogonal basis of high car-
dinality can explain any function, the choice of the
Laguerre pole o is critical for obtaining a good model fit
with a few Laguerre basis functions [Campello et al,
2004]. Hence, we allowed o to vary as a free parameter.
The initial choice was such that the basis functions
remained orthogonal within the 2-s support and the
design matrix X in Eq. (10) was numerically well condi-
tioned. Specifically, for efficient estimation of the parame-
ters, it was desirable for X to have a low condition
number, i.e. the ratio of the largest to the smallest singular
value. Figure 2 shows the basis functions with o = 0.8 for
a 2-s support and a plot of efficiency and condition num-
ber as a function of o. Efficiency is a statistical measure
defined as the reciprocal of the trace of the covariance ma-
trix of X, and it is inversely related to the variance of the
estimator [Dale, 1999].

The hyperparameter o was initialized to 0.8 and an ini-
tial guess for the coefficients for the basis functions was
obtained using a weighted least-squares fit. With this ini-
tial guess, the coefficients, together with o, were then con-
sidered as free parameters in an iterative nonlinear
optimization algorithm (Nelder-Mead simplex search)
which minimized the weighted mean-square prediction
error.

Inter-subject variability

To obtain a predictive model with good generalizability,
we averaged all individually determined model parame-
ters across the two stimulus rates, the two channels and
the 10 subjects yielding a group average across 40
conditions.

We studied the variability among model parameters
derived individually from the training set in two ways.
First, we tested the parameters for statistically significant
differences between (a) left and right hemispheres and (b)
10-Hz and 4-Hz stimulus train rates (significance level P =
0.05, Bonferroni-corrected; N = 8, 14, and 11 for the linear
bivariate, nonlinear bivariate, and univariate models,
respectively). Second, we computed from these
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parameters, the predicted response to a hypothetical stim-
ulus of 1-s duration to assess the variability of their pre-
dictive power. As a similarity metric between individual
predictions, we calculated all possible pairwise correla-
tions (from 40 conditions resulting in 780 pairs) between
the individual model predictions and studied their distri-
bution. We computed this distribution for each of the three
models, viz. the univariate, the linear bivariate and the
nonlinear bivariate.

Model diagnostics

The three different models (univariate, linear bivariate,
and nonlinear bivariate) may be compared by the correla-
tion coefficient between the data from the training set and
each model’s predictions of them. An average measure of
correlation across the 40 conditions was computed with a
leave-one-out cross-validation approach. Here, the parame-
ters from 39 of the 40 conditions were averaged as
described above and used to predict the envelope of the
remaining condition. The prediction was then repeated for
all conditions, and the mean correlation coefficient
between model predictions and data was computed across
all conditions. The three models were compared on the
grounds of both the predictive power (model fit) and pa-
rameter parsimony.

Model validation

Any truly useful model must be generalizable. Thus, a
test dataset was acquired to investigate the generalizability
(i) across subjects, (ii) across acquisition setups (ambient
noise spectra and covariance), and (iii) across stimulus
durations. The validation approach was designed to fur-
ther test the model generalizability (iv) from sensor to
source space and (v) from event-related averages to
unaveraged envelopes. To this end, the Hilbert envelope
was calculated in the source space of a cortically con-
strained minimum norm estimate from the testing dataset,
and fit to two different general linear models (GLMs),
each with a single regressor and a constant term. As
regressors, we applied both the stimulus time course and
the oscillatory response predicted by the best performing
model from the training set as determined above. The
GLM allows generalizations to unaveraged envelopes in
the sense that it is applicable to arbitrary stimulus designs
with no requirements that the stimulus trains are of equal
durations (which would be a necessary condition for aver-
aging across stimulus trains).

GLMs were fit separately for each subject. We defined
the ratio between the GLM coefficient of the regressor and
that of the constant term as the modulation depth (MD).
In communication theory, modulation depth is a metric
for the extent of modulation of a variable around its base
level. We defined the resulting map of MDs over the entire
brain surface as a modulation depth map (MDM). Only
source points statistically significantly (P < 0.05, Bonfer-

roni-corrected for an upper limit of 5000 uncorrelated
source points) predicted by the model were retained in the
MDMs. Further, among the statistically significant source
points, only those with the largest MDs (top 1%) were
visualized; this thresholding was necessary because of
the inherent spread of MNE which the statistical testing
alone cannot take into account. Since the mean number of
source points among the test subjects was 2,243, the Bon-
ferroni-corrected significance level was considered appro-
priate. It is worth noting that source points are assumed
uncorrelated; if their correlations are taken into account,
the applied significance level could be less conservative.
Single-subject maps were projected to the Free Surfer Av-
erage (FSA) brain and subsequently averaged across
subjects.

To compare the predicted (by the model) and source
estimates (by the minimum-norm) of the measured cort-
ical current envelopes in each subject, we isolated the
source point with the maximum MD for further analy-
sis. The cortical envelope for the selected source point
was averaged separately across the 1- and 6-s stimulus
trials. Correlation coefficients were computed between
the averaged envelopes and the predictions of the best
model, as well as the stimulus time course, for
comparison.

RESULTS
Inter-Subject Variability

The model parameter sets (o and the B’s) derived from
the training data were not found to be statistically signifi-
cantly different between the left and right hemispheres.
However, some significant differences were observed
between the 10-Hz and 4-Hz conditions for the univariate
and the linear bivariate model. For the univariate model, o
was found to be greater for the 10-Hz than the 4-Hz condi-
tion (P = 0.014). For the linear bivariate model, one pa-
rameter related to the onset kernel: c; (P = 0.012) in Eq.
(9) was found to be significantly different between 10- and
4-Hz conditions.

Figure 4 shows the variability of the model predictions
within four subgroups, viz. predicted left and right hemi-
sphere responses to 4- and 10-Hz stimulus trains. The sub-
averages of individual model predictions of the response
to a hypothetical 1-s stimulus train, estimated from the pa-
rameters of the 10 training-set subjects, are shown across
these subgroups. The histograms of the pairwise correla-
tions between individual model predictions, computed as
a measure of variability across conditions (40 conditions,
resulting in 780 pairs for each model) are shown as insets.
Half the pairwise correlations between individual model
predictions exceeded 0.87, 0.71, and 0.81, for the linear
bivariate, the nonlinear bivariate, and the univariate mod-
els, respectively.

Figure 5 shows the individual predictions of the enve-
lope modulation during a test stimulus consisting of the
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Variability of model predictions across subjects and categories.
The individually determined parameters from the training set
were first used to predict envelope dynamics for a hypothetical
|-s test stimulus. These individual predictions were averaged
separately for all 10 subjects over four subgroups (10- and 4-Hz
stimulus rates; left- and right-hemisphere channels, denoted LH

four durations in the experiment (0.5, 1, 2, and 4 s) by the
parameters of the linear bivariate model. Individual pre-
dictions as well as subaverages across the 10-Hz and 4-Hz
conditions are shown.

Model Diagnostics

Figure 6 shows the observed signals and the predicted
outputs (from linear bivariate, nonlinear bivariate, and
univariate models) for the right rolandic signal of subject
S3 stimulated with 4-Hz trains. The typical suppression-
rebound response is well predicted by all three models,
and the onset response appropriately predicts only the
suppression. The univariate model (bottom panels) does
not properly predict the responses for short durations (0.5
and 1 s). For the linear bivariate model (top panels), the
offset response alone predicts the rebound. However, it
also suggests a post-offset dip that is not seen in the data.
A similar post-offset dip is present to a lesser extent in the
nonlinear bivariate model output (middle panels), because
the rebound is predicted together by the offset and interac-
tion response. However, this improvement comes at the

and RH, respectively). The insets on top show histograms of
pairwise correlation-coefficients (40 conditions, resulting in the
binomial coefficient “°C, = 780 pairs) between model predic-
tions. [Color figure can be viewed in the online issue, which is
available at www.interscience.wiley.com.]

cost of six additional model parameters. Table I lists the
mean values of the parameters across all subjects, for
the univariate, the linear bivariate and nonlinear bivariate
models, and the correlation coefficients. The mean correla-
tion coefficient for the boxcar predictor was 0.44 £+ 0.02.
All three models improved upon this value, the linear
bivariate by 43%, the nonlinear bivariate by 25%, and the
univariate by 32% (see Table I). Given that the linear
bivariate model is a better fit and more parsimonious than
the nonlinear model, we considered it sufficient to validate
this model alone on the test dataset.

Characteristics of Convolution Kernels
The univariate model

Supporting Information Figure S2 shows the first- and
second-order kernels for the univariate model. The first-
order kernel predicts the response to an input of infinitesi-
mal duration, in this case a brief bilateral tactile pulse. The
second-order kernels are two-dimensional functions of
time. They may be interpreted as the response to a pair of
unit impulses applied in quick succession. Specifically,
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Predictions for all 40 individual conditions (10 subjects, two hemispheres, and two stimulus repe-
tition rates) using the linear bivariate model separately for all block durations (0.5, 1, 2, and 4 s)
(above). Mean predictions across the 20 conditions (10 subjects, two hemispheres), separately
for the 4-Hz and 10-Hz repetition rates (below).

ko(t1, tp) predicts the response at time f; to a pair of
impulses 5(t) and &(t — ty).

The bivariate model

Figure 7 shows the onset, offset, and interaction kernels
for the nonlinear bivariate model computed from the
group-mean parameters. The onset and offset kernels for
the linear bivariate model were similar (not shown). The
onset and offset kernels may be interpreted as together

predicting the linear part of the response to a stimulus of
infinitesimal duration. A straightforward interpretation of
the interaction kernel is through its projections, as illus-
trated in Figure 7c. A slice of the two-dimensional kernel
along the axis 1 — 12 = A describes the effect of interac-
tion between the onset and offset events, occurring at an
event separation of A, ie. for a stimulus of duration A.
The relationship of kernel morphology to physiology is
unclear, particularly so for the offset and interaction
kernels.

& —— Onset
ko) prediction
Figure 6. E — Offset

The observed and predicted 20-Hz o prediction
envelopes for all stimulus durations §
(4-Hz stimulus rate) for a representa- & —— Observed
tive subject (S3) for the linear bivari- —__ Predicted
ate model (top panel), the nonlinear
bivariate model (middle panel), and
the univariate model (lower panel).
For the linear bivariate model, the 2 — Interaction
entire envelope was modeled using _§ hrecition
an onset response and an offset a
response, obtained by convolution of g 3FI'1‘c:rn}
the stimulus time course with the §
onset kernel and the offset “impulse =
function” with the offset kernel. In the
nonlinear bivariate model, an addi-
tional second-order interaction kernel & A . M B — 18t order
was used. In the univariate model, = V w Y mﬁ prediction
there was no partitioning into onset g !\ ; | \ﬂﬂ NQ —— 2" order
and offset response; the univariate = "‘DW 15 VL M\ prediction
first- and second-order kernels oper- M

ated directly on the stimulus time r
course.

0 1s 0 2s 0 2 4s
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TABLE I. The group-mean parameters of the linear bivariate, the nonlinear bivariate and the
univariate models

Linear Bivariate Nonlinear Bivariate Univariate Boxcar
B co 0.1056 co 0.1245 co 0.0947
c1(1) 0.0662 c1(1) 0.0718 (1) 0.0537
c1(2) 0.0359 c1(2) 0.0567 c1(2) 0.0169 —
c1(3) 0.0076 1(3) 0.0196 1(3) 0.0022
(1) 0.0664 (1) 0.2075 (1,1) —0.0018
c(2) 0.0941 (2) —0.0698 (1,2) —0.0066
(3) —0.0300 (3) —0.0960 (1,3) —0.0031 -
c3(1,1) 0.0683 (2,2) —0.0115
c3(1,2) —0.0501 (2,3) —0.0140
c3(1,3) 0.0336 (3,3) —0.0044
c3(2,2) 0.0163
c3(2,3) 0.0031
c3(3,3) 0.0071
ol 0.8117 0.8104 0.8012
CcC 0.63 (0.03) 0.55 (0.03) 0.58 (0.02) 0.44 (0.02)

These include the coefficients for the kernels, B, and the Laguerre pole, o. The mean correlation coefficient (CC) obtained from the
cross-validation approach (see text) is also shown for each model, including the stimulus time course (boxcar). The standard errors of

mean (SEMs) for the correlation coefficient are shown in parenthesis.

Model Validation

Figure 8 (left panel) shows, on the Free Surfer Average
(FSA) brain, the modulation depth maps (MDMs) as pre-
dicted by the stimulus time course (boxcar) and the linear
bivariate model. The predictions were confined to the
hand area of the primary motor cortex (MI), which is the
most plausible generator site of the 20-Hz component of
the mu rhythm in our experimental setup.

For each test subject, Figure 8 (right panel) shows the
averages of the estimated cortical envelopes (for the 1-s
and 6-s stimulus blocks), as well as their predictions by
the stimulus time course and by the linear bivariate model.
These averages at the source point showing the maximum
modulation depth were further averaged across the test
subjects. Note that the applied ORF model is the average
model based on the training dataset, not optimized for test
subjects, stimulus rate or duration.

In addition to the shape of the envelope predicted by the
model, the “baseline” level of rhythmic activity is known to
vary across subjects. Such variability was observed in the
“baseline” levels of the envelopes estimated from the GLMs
(Supporting Information Fig. S3). For long-duration blocks,
the cortical envelopes do not stay suppressed at a constant
level below the “baseline” level; rather they may briefly
return to the baseline during the stimulation.

Table II lists the maximum MDs within the sensorimotor
cortex for each subject, in each hemisphere, and the corre-
lation coefficients between estimated and predicted enve-
lopes for both 1-s and 6-s stimulus blocks. The left- and
right-hemisphere data show no consistent differences. The
correlation coefficients show that the ORF model predicts
the envelope dynamics for the 1-s stimulus block 20% (P
= 0.038) more effectively than the stimulus time course.

DISCUSSION

We introduced a quantitative model—based on a gener-
alized convolution approach—for the dynamics of event-
related rhythmic MEG activity. Univariate and bivariate
generalized convolution models were fit to the 20-Hz en-
velope of the mu rhythm at representative channels. The
models were estimated with a supervised machine-learn-
ing approach. The temporal characteristics of the convolu-
tion kernels of all models were consistent across subjects
and conditions. The generalizability of the models was
tested using a different experimental paradigm and a vali-
dation approach based on mapping of GLM coefficients on
to the cortical surface; the models generalized across sub-
jects, stimulus paradigms, and analysis methods, i.e. from
event-related averages to unaveraged envelopes and from
sensor to source space. However, it is important to empha-
size that this approach represents only a first step towards
generalization, and further studies are needed to quantify
the dependence of the model on stimulus parameters.

For the first time with MEG data, we introduced a gen-
eral linear model approach (conventionally applied to
fMRI analysis of block-design experiments) to make infer-
ences on unaveraged cortical current envelopes by visual-
izing their modulation depths over the entire cortical
surface. Statistically significant local maxima in the pri-
mary motor cortex were related to the rolandic 20-Hz
rhythms, lending credibility to the models” ability to pre-
dict cortical generators of oscillatory responses.

On the Model Structure

The expansion order of the Volterra series and the num-
ber of basis functions used to model the Volterra kernels
are the two key determinants of the model structure.
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Onset (a), offset (b), and interaction (c) kernels of the bivariate nonlinear model. The kernels
were computed from the mean set of parameters across subjects and conditions. Slices of the
interaction kernel parallel to the diagonal represent the nonlinear component of the predicted
response, at respective time separations between onset and offset i.e. stimulus durations. Slices

corresponding to durations 0, 0.5, and 1.0 s are shown.
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Figure 8.

Predictions of spatial generators of the 20-Hz rhythm, and the
corresponding time courses. Left: The mean modulation depth
maps (MDMs) across subjects, resulting from a general linear
model (GLM) of the cortical current envelopes, with the boxcar,
and the linear bivariate model separately used as regressors. All
MDMs were projected on an inflated Free Surfer Average (FSA)
brain. The colored regions represent the source points with top
1% modulation depth. Right: The mean envelopes of the cortical

minimum-norm estimates for the source point with maximum
MD, further averaged across the test subjects for both short
(I-s) and long (6-s) stimulus blocks. Predictions of the envelope
by the stimulus time course (top) and the linear bivariate model
(bottom), are overlaid on the envelopes. The models were
derived from the training data. The error bars show standard
errors of mean (N = 5 subjects).
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TABLE Il. The subjectwise maximum modulation depths (MaxMD) in the rolandic region for each hemisphere of
the test subjects, and the correlation coefficients between predicted and estimated cortical responses

Linear bivariate Correlation Boxcar Correlation

Subject MaxMD(L) MaxMD(R) 1s 6s MaxMD(L) MaxMD(R) 1ls 6s

S2 24 12 0.73 0.59 22 12 0.53 0.52
S11 12 16 0.64 0.59 11 17 0.57 0.61
S12 16 8 0.53 0.44 15 7 0.46 0.46
S13 20 16 0.72 0.55 20 15 0.57 0.63
S14 28 28 0.69 0.74 26 28 0.62 0.71
Mean SD 20.0 £ 6.3 16.0 £7.5 0.66 £+ 0.08 0.58 + 0.11 18.8 £ 5.9 158 £ 7.8 0.55 £+ 0.06 0.59 £+ 0.10
MNM 12 10 12 9

Both the mean (£ standard-deviation, SD) of the single subject maxima, and the mean of the maxima (MNM) after normalization to the

Free Surfer Average (FSA) brain are given. The means (+ SD) for the correlation coefficients are also listed.

Truncation of the Volterra series to the second order is
practical and does not pose a serious problem for the fol-
lowing reasons. First, the number of parameters required
for the model grows exponentially with the order. To pre-
vent overlearning (a phenomenon showing an excellent fit
to the training set but poor test set generalization), we
need exponentially more data to estimate the model. Some
symptoms of overlearning were already observable in the
cross-validation, based on within-training-set predictive
power, where the linear bivariate model with eight param-
eters outperformed the nonlinear bivariate model with 14
parameters. Increasing the number of parameters is likely
to result in poorer generalization. Second, if the 2-s kernel
support is a reasonable assumption, the second-order ker-
nel appears sufficient to represent this nonlinearity. Last,
higher-order kernels are extremely hard to interpret. In the
literature on applications of Volterra theory cited here,
higher-order terms were not used.

The number of basis functions must be large enough to
capture the essential temporal features of the envelope dy-
namics. Simultaneously, it must be small enough so that
the least-squares estimation is numerically well-posed, and
also minimize overfitting the nonessential features of the
envelope.

The correlation coefficients, used as measures of predic-
tion performance, showed that for the training dataset the
linear bivariate model performed significantly better than
the nonlinear bivariate model and equally as well as the
univariate model. Further, the linear bivariate model,
specified by eight parameters, is more parsimonious than
both the nonlinear bivariate and the univariate models
which require 14 and 11 parameters, respectively. One
concern for future applications of this model is the trade-
off between predictive accuracy (benefit provided by an
accurate fit) and model complexity (the cost incurred in
applying it) relative to the boxcar. Therefore, further
research is required to come up with objective measures of
integrating fit and complexity. For instance, Bayesian
model selection techniques, such as those applied in the
dynamic causal modeling (DCM) framework [Penny et al.,
2004], may be explored.

Since the two inputs to the bivariate model are not inde-
pendent, it may be rewritten as a univariate model with
two kernels:

y(t) =3 (t) * ul(t) + kZ(t) * l/lz(t)
(12)
=k (1) * {ul(t) +ky(t) * {_ ducit(t)} }

where, ki(t) * k)/'(t) kx(f). This model could be interpreted
as a linear transformation of the boxcar input, with a suita-
ble nonlinearity added at the stimulus offset alone. The
nonlinearity in this case would be a rectified version of the
negative time derivative of the stimulus time course. Such
a model may be viewed alongside a class of linearized
models for predicting the hemodynamic response in fMRI,
in which the stimulus time course is first, prior to convolu-
tion with the HRF, transformed at the onset to account for
neural adaptation effects [Nangini et al., 2005; Soltysik
et al., 2004].

Interpretation of Model Parameters

The averaging of model parameters across stimulus con-
ditions deserves careful attention. Since only one among
the eight parameters differed significantly between the 10-
and 4-Hz conditions, and this single parameter only for
the linear bivariate model, we averaged the parameters
across all conditions without doing an explicit sensitivity
analysis to determine the significance of each parameter.
The goals of a maximally generalizable and a maximally
discriminative model are contradictory. In this work, we
opted for the former. Further research involving carefully
designed stimulus sequences is required to build more dis-
criminative models.

Although the model allowed to predict the spatial distri-
bution of rhythmic activity represented by cortical mini-
mum-norm estimates, the parameters themselves are
not informative about the physiological mechanisms

¢ 832 ¢



¢ Oscillatory Response Function ¢

underlying modulations of the brain rhythms. Conversely,
the generalized convolution framework is convenient in
the sense that no assumptions are required about the gen-
erative process (provided that the span of the basis func-
tions used, in this case the Laguerre polynomials, is
sufficiently comprehensive) that gives rise to the modula-
tions. In this sense, the empirical, black-box model is more
flexible in modeling the true characteristics of the response
than, for instance, a neural mass model of rhythmic activ-
ity [Jansen and Rit, 1995] derived from elementary build-
ing blocks. This important distinction between black-box
models and generative models was well emphasized by
Friston et al. [2000] who compared their empirical, nonlin-
ear Volterra model of the hemodynamic response [Friston
et al., 1998] with the balloon model [Buxton et al., 1998], a
mechanistic model of the hemodynamic response with
physiologically meaningful parameters. The Volterra ker-
nels corresponding to the balloon model resembled the
empirically derived kernels, and the empirically derived
kernels in turn were explained by physically plausible bal-
loon model parameters.

Drawing on these lines, it would be instructive to study
the properties of the ORF convolution kernels associated
with generative models of neural dynamics, such as the
neural mass model. Such a study could potentially both
motivate the ORF physiologically and demonstrate the ad-
equacy of the generative model for predicting the
response. In this context, studies by Valdes et al. [1999]
and Sotero et al. [2007] are particularly noteworthy, since
they both applied generative models for explaining
observed EEG data. Valdes et al. [1999] fit the parameters
of the neural mass model of Zetterberg et al. [1978] to real
EEG data within a maximum likelihood framework. Sotero
et al. [2007] extended the model by David and Friston
[2003] to build generative models of several EEG/MEG
rhythms; the models were able to explain temporal, spa-
tial, and spectral characteristics of alpha, beta, gamma,
delta, and theta rhythms. The model was also able to pre-
dict the suppression of alpha activity resulting from simu-
lated visual input applied at the thalamic level.

Model Generalization

For the test set, the model was a significantly more
effective predictor than the stimulus time course for the
short but not for the long stimulus blocks. At least two
reasons may account for this observation. First, the model
was not trained on 6-s but 1-s blocks. Second, as the stim-
ulus prolongs, the suppression part of the response domi-
nates. Since an inverted stimulus time course captures the
suppression well, the rebound-related nonlinearity not
captured by the boxcar contributes less to the model error,
and hence to the correlation coefficient.

The baseline level of the cortical rhythms varies accord-
ing to the subject, and this variation is well reflected in the
GLM coefficients. Additionally, in our subjects, the sup-

pression of the cortical rhythms did not stay constant dur-
ing the long-duration stimuli in the test set, but the level
fluctuated considerably. Such fluctuations were variable
across the five test subjects, and were not predicted by the
model.

We advocate the framework as a broad, quantitative
approach to characterize oscillatory dynamics of brain
rhythms with specific temporal, spectral, and spatial char-
acteristics. However, it is important to clarify that the gen-
eralizability of the model does not imply that a single ORF
can model all kinds of brain rhythms, such as induced
alpha or gamma oscillations. The parameters of the model
have to be uniquely derived for each type of brain
rhythm.

Thus, although the ORF model may not be optimally
generalizable, its parametric nature makes it sufficiently
generalizable to discriminate between conditions of inter-
est. An analogous situation is frequently encountered in
the fMRI literature where a simple, linear hemodynamic
response function works well as a general discriminative
model, although it is widely agreed that the true hemody-
namic response is a complex, nonlinear phenomenon that
varies across brain areas and subject groups [Handwerker
et al., 2004].

Potential Applications of the Model

Although our goal was to obtain a general model of the
dynamics of rhythmic activity, quantitative models, such
as the ORF, may be used to systematically explore the
effects of stimulus parameters, such as intensity, duration,
and adaptation, as well as of disease and age, by capturing
their effects in a few parameters. The parameters may
prove a useful tool to reliably discriminate between differ-
ent tasks and pathologies, as well as to characterize inter-
subject differences. To study the variation of the dynamics
of a rhythm as a function of cortical location, the ORF
model could be extended so that it is separately optimized
for each cortical source point.

Task-specific effects on the rhythms could also be stud-
ied using the GLM approach to MEG data, especially in
source space. A challenging and interesting application of
this approach is in the analysis of brain imaging data from
different methods where direct comparisons are sought
between fast electrical fluctuations, measured by EEG or
MEG, and slow hemodynamics, measured by fMRI.
Another interesting application of the ORF/GLM approach
is to map the cortical generators of the suppression and
the rebound separately, using the onset and offset predic-
tions of the linear bivariate model simultaneously as GLM
regressors.

The generalized convolution approach is sufficiently
broad in the sense that the same framework may be
applied to study dynamics of neural activity at various
scales, from single-unit electrophysiological recordings to
noninvasive methods such as MEG. For these reasons, it
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seems feasible and worthwhile to quantitatively model the
dynamics of the brain’s electromagnetic rhythmic activity.
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