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Abstract: Independent component analysis (ICA) of electroencephalographic (EEG) and magnetoence-
phalographic (MEG) data is usually performed over the temporal dimension: each channel is one row
of the data matrix, and a linear transformation maximizing the independence of component time
courses is sought. In functional magnetic resonance imaging (fMRI), by contrast, most studies use spa-
tial ICA: each time point constitutes a row of the data matrix, and independence of the spatial patterns
is maximized. Here, we show the utility of spatial ICA in characterizing oscillatory neuromagnetic sig-
nals. We project the sensor data into cortical space using a standard minimum-norm estimate and
apply a sparsifying transform to focus on oscillatory signals. The resulting method, spatial Fourier-
ICA, provides a concise summary of the spatiotemporal and spectral content of spontaneous neuro-
magnetic oscillations in cortical source space over time scales of minutes. Spatial Fourier-ICA applied
to resting-state and naturalistic stimulation MEG data from nine healthy subjects revealed consistent
components covering the early visual, somatosensory and motor cortices with spectral peaks at �10
and �20 Hz. The proposed method seems valuable for inferring functional connectivity, stimulus-
related modulation of rhythmic activity, and their commonalities across subjects from nonaveraged
MEG data. Hum Brain Mapp 00:000–000, 2011. VC 2011 Wiley-Liss, Inc.
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*Correspondence to: Pavan Ramkumar, Brain Research Unit, Low
Temperature Laboratory, Aalto University School of Science, PO
Box 15100, FI-00076 Aalto, Finland. E-mail: pavan@neuro.hut.fi

Received for publication 6 October 2010; Revised 7 February 2011;
Accepted 24 February 2011

DOI: 10.1002/hbm.21303
Published online in Wiley Online Library (wileyonlinelibrary.
com).

VC 2011 Wiley-Liss, Inc.



INTRODUCTION

The discovery of the brain’s hemodynamic resting-state
networks, and their variability during health [Biswal et al.,
1995; Gusnard and Raichle, 2001], disease [Jafri et al., 2008;
Sorg et al., 2007], naturalistic stimulation [Malinen et al.,
2007] as well as naturalistic tasks [Bartels and Zeki, 2005],
have evoked growing interest in the reactivity and func-
tional significance of spontaneous, nonaveraged electro-
physiological brain rhythms. Just as data-driven methods
in the analysis of functional magnetic resonance imaging
(fMRI) [Beckmann and Smith, 2005; Calhoun et al., 2001;
Malinen et al., 2007] have enabled detailed descriptions of
and statistical inferences about the brain at rest, electro-
physiological accounts of the brain’s resting state [de Pas-
quale et al., 2010; Laufs, 2008; Mantini et al., 2007] would
benefit from a data-driven characterization of the dynam-
ics of brain rhythms over time scales of minutes.

Independent component analysis (ICA) is a data-driven
method. It can be applied to recordings of brain activity col-
lected during rest or complex naturalistic stimulation even
when the characteristic brain response is unknown and
identical stimuli cannot be repeated. To any spatiotemporal
dataset, ICA can be applied along the temporal or the spa-
tial dimension to extract sources that are maximally inde-
pendent temporally or spatially, respectively. The choice of
applying temporal vs. spatial ICA depends on two key fac-
tors. First, the number of spatial and temporal data points
available governs the accuracy of the ICA estimation. As a
rule of thumb, the larger the number of observations com-
pared with the number of variables, the more robust the
estimation. Since fMRI datasets typically have significantly
more spatial than temporal data points whereas the situa-
tion is the opposite in EEG/MEG datasets, spatial ICA is
more robust for fMRI, and temporal ICA for EEG/MEG
analysis. Second, the statistical properties of the data and
the goal of the analysis matter, i.e., whether representative
components of brain activity are more likely to be tempo-
rally or spatially independent. For instance, seed-based cor-
relation analysis of fMRI data suggests that spatially distinct
brain networks can be temporally correlated. To capture
spatially distinct, temporally correlated, brain regions as in-
dependent components, spatial ICA is more commonly
applied in the analysis of fMRI data. By contrast, for EEG
and MEG, ICA has been mainly applied to separate various
artifacts from brain activity [Vigário et al., 1997]. Since the
time courses of artifacts and brain activity are statistically
independent in MEG and EEG, artifact rejection has so far
been the typical application for temporal ICA.

We recently showed that (ordinary) temporal ICA is not

optimally designed for finding physiologically interesting

sources of rhythmic activity from the raw MEG time series

owing to the high sparseness of artifactual signals in the

time domain [Hyvärinen et al., 2010]. Therefore, applying

a suitable sparsifying transform, such as the short-time

Fourier transform (STFT), before ICA, greatly improves

the identification of oscillatory processes. STFTs of multi-

channel time series result in a 3-way data structure with

temporal (time points/windows), spatial (channels or

source signals) and spectral (frequency bins) dimensions.

The 3-way data can be treated as a two-dimensional ma-

trix in several ways. Previously, we imposed sparseness

on the time-frequency dimension with no constraint on the

spatial dimension [Hyvärinen et al., 2010].
In this work, we explored the feasibility of applying trans-

formations that maximize spatial and spectral sparseness in
cortical source space. First, we applied ICA along the spatial
dimension to obtain independent and spatially sparse sour-
ces. In addition, we applied ICA to a suitable transformation
of the 3-way data in cortical source space. Many brain
rhythms, although resulting from the interplay between thal-
amus and cortex, have rather focal cortical manifestations
and narrow-band spectral characteristics. However, they do
not necessarily exhibit temporal sparseness. We therefore
sought independent generative processes from the data by
maximizing spatial and spectral sparseness of the compo-
nents to be separated. Specifically, we performed linear, corti-
cally-constrained minimum-norm estimation (MNE) to the
neuromagnetic time series to obtain cortical current source
time series. Then we computed STFTs of these time series
and applied complex-valued ICA along the spatiospectral
dimension. We call this method spatial Fourier-ICA (SFICA).
In SFICA, each statistically independent component is charac-
terized by its cortical distribution, its spectral profile, and its
envelope dynamics over the entire duration of the recording.
Using a realistically simulated MEG dataset, we compared
SFICA applied on the 3-way data in cortical source space
with basic spatial ICA applied directly on the cortical projec-
tion of raw time series of MEG signals. Based on this compar-
ison on simulated data, we consider SFICA more robust than
basic spatial ICA for describing the dynamics of brain
rhythms at the cortical level. We also applied SFICA to a real
MEG dataset acquired while subjects were presented with
naturalistic auditory, visual, and tactile stimuli and while
they were resting with their eyes open.

MATERIALS AND METHODS

Subjects

Eleven healthy adults (6 females, 5 males; mean age 30
years, range 23–41 years) participated in the study after
written informed consent. The recordings had prior ap-
proval by the Ethics Committee of the Helsinki and Uusi-
maa Hospital District (protocols No. 9-49/2000 and No.
95/13/03/00/2008, granted to N. Forss and R. Hari). Data
from nine of the eleven subjects were used in this analysis;
data from two subjects had to be discarded due to
improper delivery of auditory stimuli.

Experimental Setup

The stimuli used in the experiment were modified from
those used in an earlier fMRI study [Malinen et al., 2007]
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and comprised auditory and visual stimuli in blocks of 6–33 s
and tactile stimuli in blocks of 15 s. Auditory stimuli con-
sisted of 0.1-s tone beeps (at 250, 500, 1000, 2000, or 4000 Hz
randomly varying in the same block; presentation rate 5 Hz)
and of pre-recorded speech (a male voice narrating the his-
tory of the local university, or the same male voice providing
guitar fingering instructions). Visual blocks consisted of silent
home-made video clips of people with focus on faces or
hands, and of buildings. Tactile stimuli were delivered at 4
Hz using pneumatic diaphragms attached to the index, mid-
dle, and ring fingers of both hands; the order was random
but homologous left and right fingers were always stimulated
simultaneously. The experiment consisted of three parts: (i)
natstim: the subjects received an 8-min sequence of auditory,
visual and tactile blocks in a randomized order and concaten-
ated without any rest periods in between, (ii) nat&rest: the
subjects received a stimulus sequence similar to natstim but
the stimulus blocks were interspersed with 15-s rest blocks,
so that the entire recording lasted for about 12 min, and (iii)
restfix: the subjects were resting quietly for about 10 min with
their eyes open, fixating on a crosshair on the screen.

Measurements

Measurements for each condition (natstim, restfix, and
nat&rest) were repeated once, resulting in a total of 6 meas-
urements per subject. In addition, after the experiment, a 2-
min recording was conducted without a subject in the scan-
ner (emptyroom) to estimate noise statistics. MEG signals
were acquired with a 306-channel Elekta NeuromagVR MEG
system (Elekta Oy, Helsinki, Finland), filtered to 0–200 Hz
and digitized at 600 Hz. Anatomical MRIs were obtained
using a 3-T General Electric Sigma MRI scanner (Milwau-
kee). During the MEG recording, four small head position
indicator (HPI) coils, whose locations had been digitized
with respect to anatomical landmarks, were continuously
energized to track the subject’s head position with respect
to the MEG sensors. Vertical electro-oculogram was moni-
tored in all 11 subjects and electrocardiogram in 7.

Simulated Data

We simulated MEG data from a 306-channel Elekta Neuro-
magVR system, ‘‘sampled’’ at 150 Hz. Based on the anatomy of
Subject #5, we placed three oscillating current dipoles perpen-
dicular to the cortical surface in the left central sulcus (lCS; 19
Hz), the right central sulcus (rCS; 12 Hz) and the right parieto-
occipital sulcus (POS; 8 Hz). The duration of the simulated
measurement was 2 min. Each oscillatory source was ampli-
tude modulated by a different smoothed boxcar function (Fig.
2) with a SNR of 20 dB. Next, we applied a forward solution
with a boundary-element conductor model from Subject #5
(just as in the inverse modeling of the same subject’s real MEG
data; see Section Minimum-Norm Inverse Solution) to simulate
the 306-channel MEG data. Finally, to make the simulations
more realistic, we added real MEG data of the same duration
measured from an empty room to yield an SNR of �10 dB.

The simulated recording were filtered with signal space separa-
tion (SSS) exactly as the real data (see ‘‘Preprocessing’’ section).

Overview of Spatial Independent Component

Analysis

In independent component analysis, one estimates a set
of underlying sources represented by a matrix S, as well
as their linear mixing matrix A, by observing only the lin-
ear mixture of the sources represented by matrix X. Thus,
the model to be estimated is of the form

X¼AS (1)

The ICA estimation algorithm maximizes the statistical in-
dependence of the sources (rows of S). Figure 1 describes the
sequence of analysis steps we adopted for spatial ICA (‘‘Spa-
tial Independent Component Analysis’’ section) and spatial
Fourier-ICA (‘‘Spatial Fourier-ICA’’ section). For spatial ICA,
X is the minimum-norm current estimate of the observed
MEG data, with each row representing a single time point
and each column representing a location on the cortical sur-
face (voxel). For spatial Fourier-ICA, each row comprises the
complex-valued Fourier coefficients from each voxel at which
the current estimate is computed, for each time window over
which the short time Fourier transform is taken (see Fig. 1,
right panel). First, we preprocessed the data to remove arti-
facts (see ‘‘Preprocessing’’ section); second, we computed the
minimum-norm inverse solution (see ‘‘Minimum-norm
inverse solution’’ section); third, for basic spatial ICA we pro-
jected the raw real-valued MEG data into cortical source space
and performed real-valued ICA with real-valued mixing coef-
ficients; for spatial Fourier-ICA we computed STFTs, pro-
jected the complex-valued Fourier transforms into cortical
source space, rearranged the 3-way data and performed com-
plex-valued ICA with a complex-valued mixing matrix.

We applied spatial ICA and spatial Fourier-ICA to our
data in the following way. First, to compare the two algo-
rithms with known ground-truth, we applied both algo-
rithms to the simulated data and compared the extracted
sources with the true underlying sources (those that were
explicitly included in the simulation) in terms of their
percentage variance explained. Second, as an additional
comparison, we applied the two algorithms to a natstim
recording from a single subject. Lastly, we applied spatial
Fourier-ICA to data from each subject separately, by first
temporally concatenating the subject’s 6 recordings. After
estimating the ICs, we matched a few most salient compo-
nents across subjects by visual inspection and averaged
their time courses to obtain a group-level representation;
for details, see ‘‘Spatial Fourier-ICA’’ section.

Preprocessing

Raw MEG data were manually examined for ‘bad chan-
nels’ that were omitted before Signal Space Separation
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(SSS) [Taulu and Kajola, 2005] (‘‘MaxFilter’’ version 2.0,
Elekta Oy, Helsinki, Finland) was employed to suppress
external interference and to correct for head movements.
To additionally remove any DC-jumps occasionally pres-
ent in the data, we differentiated each time series, applied
a median filter to reject large discontinuities and
reintegrated the signals back. Finally, the data were
downsampled by a factor of 4, i.e., to a sampling rate of
150 Hz.

Minimum-Norm Inverse Solution

For each subject, the brain’s cortical surface was recon-

structed from an anatomical MRI using FreeSurfer

(http://surfer.nmr.mgh.harvard.edu, Martinos Center for

Biomedical Imaging, Massachusetts General Hospital).

Dipolar current sources were estimated at cortically-con-

strained discrete locations (source points) separated by 15

mm. Each source point contained one current dipole

Figure 1.

Illustration of the various steps in the spatial ICA (SICA) algo-

rithm (left) contrasted with the spatial Fourier-ICA (SFICA)

algorithm (right). Left, SICA: the preprocessed time-series data

(Y) were projected into cortical space by a left multiplication

with a linear inverse operator (G) to obtain the cortical current

time series Z. Real-valued ICA was done on ZT to obtain the

spatial maps as the rows of S and the time courses as the col-

umns of A. Right, SFICA: The preprocessed time-series data (Y)

was windowed (Yw) and right-multiplied by the FFT matrix to

obtain channel-wise short-time Fourier transforms (Ŷ). The

STFTs were left-multiplied by the precomputed linear inverse

operator (G) to obtain 3-way data in cortical space (X̂). The
complex valued X̂ was rearranged as time vs. cortical points x

frequency (see text) and complex-valued ICA was done on this

matrix. The squared absolute values of the columns of A pro-

vide the envelopes of Fourier-power and the rows of Ŝ were

decomposed into the spatial power map and power spectra (see

text). [Color figure can be viewed in the online issue, which is

available at wileyonlinelibrary.com.]
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oriented along the normal to the cortical surface and two

dipoles in the plane perpendicular to it. A single-compart-

ment boundary element model (BEM) was used to model

the conductivity of the cranium. A forward solution was

computed for each source point. Next, using the MNE Suite

software package (http://www.nmr.mgh.harvard.edu/

martinos/userInfo/data/sofMNE.php) an empirical noise

covariance matrix was computed from the 2-min empty-

room recordings, separately for each subject’s data. To

ensure that the noise statistics were adapted to the fre-

quency range of interest (see ‘‘Spatial Independent Compo-

nent Analysis’’ and ‘‘Spatial Fourier-ICA’’ sections), we

high-pass filtered the emptyroom recordings at 4.7 Hz. A

linear, depth-weighted [Dale et al., 2000], minimum-norm

inverse operator G of dimensions Ns � Nc (where Ns is the

number of source points and Nc is the number of channels;

Ns >> Nc) was computed with a loose orientation constraint

favoring source currents perpendicular to the local cortical

surface by a factor of 2.5 with respect to the currents along

the surface [Lin et al., 2006]. At each location, only sources

normal to the cortical surface were retained for further anal-

ysis. Current estimates were subsequently noise-normalized

by the square-root of the estimate of the noise variance at

each source point [Dale et al., 2000].

Spatial Independent Component Analysis

We filtered the preprocessed MEG data Y to 4.7–75 Hz
and projected them to cortical space with the linear inverse
operator G, resulting in a source current matrix Z (Ns � Nt

where Nt is the number of time points). The source current
matrix was normalized by the square-root of the estimated
noise variance at each source point [Dale et al., 2000]. We
applied principal component analysis (PCA) to reduce the
dimensionality to 25, whitened the data, and then applied
real-valued FastICA with a real-valued mixing matrix to ZT

with symmetric estimation and tanh(�) nonlinearity.

Spatial Fourier-ICA

Three-way spectral estimation in cortical

source space

For each preprocessed data matrix Y (Nc channels x Nt

time points), we computed the Hamming-windowed, com-
plex-valued short-time Fourier transforms over Nw nono-
verlapping windows, each one second in duration. The
discrete Fourier transform of each time window Yw may
be interpreted as a matrix multiplication from the right.
Let us denote this matrix by H. The Fourier transform is
then obtained by

Ŷw¼ YwH (2)

Here, Yw is Nc channels x Nt/Nw time points and H is
Nt/Nw time points x Nf frequency bins. The STFT across

all time windows (Nc � NwNf) is then obtained by concat-
enating the matrices as

Ŷ ¼ ½Ŷ1 Ŷ2 :::ŶNw
� (3)

The STFT in cortical source space was then obtained by
left-multiplying the STFT by the linear inverse operator G,
viz.

X̂0 ¼ GŶ (4)

X̂0 (Ns � NwNf) can be recognized as a 3-way (Ns � Nw �
Nf) tensor, X̂tensor written out as an ordinary (2-way) ma-
trix. As in the case of spatial ICA, we noise-normalized
the current estimates by the estimates of square-root of the
noise variance at each source point [Dale et al., 2000]. We
then rearranged X̂tensor as a Nw � NsNf matrix X̂, such that
each row is a collection of Fourier coefficients of all source
points concatenated together horizontally for its respective
time window w. Our 15-mm spacing between the source
points resulted in Ns �3000, including both hemispheres.
A 128-point FFT used to compute the STFT resulted in 64
frequency bins for each 1-s window. The 64 bins spanned
a range of 0–75 Hz. Since the power is distributed very
differently in the low and high frequency bands, whiten-
ing as a preprocessing step could potentially distort the
current estimate. Hence, we separated the dataset into low
(0–4.7 Hz) and high (4.7–75 Hz) frequencies and applied
spatial Fourier-ICA only on the high-frequency data.

Application of complex-valued ICA on

concatenated data

For each subject’s data, we temporally concatenated the
rearranged STFT; X̂k; k ¼ 1; 2; :::6 runs (two runs each of
natstim, restfix, and nat&rest) resulting in
X̂T
concat ¼ ½X̂T

1 X̂T
1 : : : X̂T

6 �. We considered temporal concate-
nation justified because the majority of brain networks are
active during both task and rest [Smith et al., 2009]. Before
concatenation, each run was normalized by the mean of
the power across all time-windows, Fourier bins and
source points. We did not apply voxelwise normalizations
applied in fMRI analysis because it would undo the effect
of the noise-normalization. From the restfix runs we dis-
carded the first minute of the data to focus on a stable
resting state. To X̂concat, we applied complex-valued ICA,
treating each row as an observed signal assumed to be a
linear mixture of unknown sources: we reduced the
dimensionality of the data to 25 using complex-valued
eigenvalue decomposition, whitened the reduced data in
the complex domain and then applied the complex-valued
FastICA algorithm [Bingham and Hyvärinen, 2000]. Note
that the whitening step here is a standard preprocessing
step in ICA and should not be confused with the spatial
whitening operator which is used to whiten the noise-co-
variance matrix in the MNE inverse solution. The ICA esti-
mation was symmetric, and the non-Gaussianity measure
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was of the form logð1þ j:j2Þ. Thus, for each IC, we
obtained one spatial map and power spectrum but six
time-courses (one corresponding to each run).

We arranged the simulated data similarly as the real
MEG data, and analyzed the entire 2-min time series as
we did with for the real measurements. However, we
reduced the temporal dimension to 10 (instead of 25, as
we did for the real MEG data) with PCA and extracted 10
independent components. The reasoning for extracting 10
ICs only was as follows. First, the simulated 2-min time-
series contained fewer observations than the 60-min real
data time-series. Second, the simulated data contained
only 3 sources and relatively unstructured noise from the
emptyroom run.

Visualization of spatial Fourier-ICs

Each complex-valued IC resulted in a set of Fourier
coefficients for each cortical source point. We visualized
the spatial map Mk, of the IC with index k by taking the

mean of the squared Fourier amplitude (squared magni-
tude of the complex Fourier coefficients) across all fre-
quency bands. Since the distribution of mean-squared
Fourier amplitude over the whole brain is highly non-
Gaussian, we did not apply conventional z-score-based
thresholding; instead, we applied a threshold to display
for each component map only source points with the top
5% squared Fourier amplitude for the real MEG data and
the top 1% for the simulated data. Since the source points
represent only a sparse subset of the vertices in the trian-
gular tessellation of the cortical surface, iterative smooth-
ing was applied using the MNE suite with a smoothing
factor of 15. Here the smoothing refers to the number of
iteration steps during which each vertex of the image is
assigned the average value of its nonzero neighbors.
(http://www.nmr.mgh.harvard.edu/martinos/userInfo/
data/sofMNE.php). To visualize the spectral profile Jk, we
plotted the mean and standard deviation of the Fourier
power spectrum over all source points exceeding the 95th
percentile (real MEG data) or the 99th percentile

Figure 2.

Comparison between SICA (top) and SFICA (bottom) applied to a

simulated dataset. Left: Envelopes of the simulated (dashed lines)

and estimated (solid lines) sources are given separately for SICA

and SFICA. The colors green, blue and red refer to the 3 simulated

sources viz. right parieto-occipital sulcus, left central sulcus, and

right central sulcus. Each panel has 4 time courses; the first three

depict one correctly estimated sources (gauged by the correlation

coefficients between the estimated and simulated sources; see text)

overlaid on the true simulated sources. The last time course depicts

all false sources. Correlation coefficients between each correctly

estimated and the best matching true source are given. The largest

correlation coefficient for all incorrectly estimated sources was less

than 0.1. For SICA, the envelope of the time course is shown rather

than the time course of the oscillatory source itself. Right: Power

spectra of the estimated sources. The spectral peaks of the simu-

lated sources (sinusoids) are represented by arrows.
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(simulated data). The absolute values of the column of the
estimated mixing matrix corresponding to the row of the
estimated IC matrix give the time course of the Fourier
amplitude envelope, Lk. We then plotted the time courses
of each of the 6 runs.

Posthoc Characterization of Independent

Components

We computed for each IC, from the envelope time
course of the nat&rest conditions, a modulation score for
each stimulus modality (auditory, visual, and tactile) as a
percent signal change from a prestimulus baseline of �15
s in duration (i.e., the preceding rest block); a positive
score indicates enhancement and a negative score suppres-
sion with respect to the baseline level. We visualized the
modulation score averaged across the two nat&rest
conditions.

Further, to classify the components as related to audi-
tory, visual, or tactile stimuli, we formally tested the com-
ponent time courses for stimulus-related modulation
treating each stimulus block as an independent observa-
tion. Specifically, for each component, we took the nat&rest
time courses and computed the median signal for each
stimulus block as well as the median signal for the rest
block preceding the stimulus block. To bring the distribu-
tions closer to normal, we took the logarithms of these me-
dian values. We collected these values separately for each

stimulus type viz. auditory, visual and tactile. We then
compared the log(median(stimulus)) with the preceding
log(median(rest)) using a two-tailed t-test with unequal
variances at a confidence level of 0.95. Finally, we assigned
to each component the label of ‘‘audition-related,’’ ‘‘vision-
related,’’ or ‘‘touch-related’’ depending on which stimulus
type t-test rejected the null hypothesis with the greatest
confidence. If none of the comparisons were statistically
significant, we labeled the component as ‘‘stimulus-
unrelated.’’

Intersubject Consistency

Since we placed our source points very sparsely on the
cortical surface (�15-mm separation between neighbors),
we could not reliably apply any automatic spatial normal-
ization method for matching the ICs (obtained from con-
catenated SFICA) across subjects.1 Instead, we manually
selected one representative component from each of the
eight subjects for the �10-Hz occipital and the �20-Hz
rolandic rhythms, and averaged their time courses for the
natstim and nat&rest runs.

RESULTS

Comparison of Spatial ICA and Spatial

Fourier-ICA

Simulation results

In the following, we consider the correctly estimated
sources as those ICs whose time courses had sufficiently
large (r > 0.8) correlation coefficient with those of the true
simulated sources, and the rest of the ICs as false sources.
Both SICA and SFICA were able to correctly estimate the
three simulated sources as measured by the correlation
coefficient between all pairs of estimated and true sources.

Figure 2 (above: SICA, below: SFICA) shows the enve-
lope time courses and the power spectra for all three cor-
rectly reconstructed sources overlaid on the corresponding
signals of the true sources. Dashed lines represent true
simulated sources, whereas solid lines represent correctly
estimated sources. The three different simulated sources—
located in the left central sulcus, the right central sulcus,

Figure 3.

Comparison of percentage variance explained by components

estimated from the simulated data. The figure shows the cumu-

lative densities of percentage variance explained by the compo-

nents ranked in descending order of percentage variance

explained in reduced space for SICA (red) and SFICA (black).

The first three components (correctly estimated sources) cap-

tured greater data variance in the case of SFICA than in the

case of SICA.

1In FreeSurfer, surface-based co-registration of an individual brain
to the average brain is typically achieved by inflating the surfaces to
a sphere using a nonlinear transformation and then applying a rota-
tional transformation to the sphere such that the correspondence
between the triangles of the surface tesselation is maximized. Since
the individual cortical surfaces are sparsely sampled at 15 mm for
source modeling (i.e., the average separation between two sources is
15 mm), the above procedure can result in gross errors in the identifi-
cation of corresponding source points between subjects in the spa-
tially normalized space. Thus, sparse sampling of the cortex is prone
to error in group-level inference. Consequently, we chose to man-
ually select corresponding ICs across subjects.
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and the right parieto-occipital sulcus—are represented in
green, blue, and red. The time resolution of the envelope
is 6.7 ms (150 Hz) for SICA and 1 s (1 Hz) for SFICA. The
7 false sources (in black) are also overlaid on the true
underlying sources. The correlation coefficients between
the false sources and the simulated sources were very low
(r < 0.1). Note that the scaling of the reconstructed sources
with respect to the true underlying sources is arbitrary,
due to the scale ambiguity of ICA. However, the energies
of the estimated time courses are not arbitrary with respect
to each other.

Figure 2 illustrates several key differences between the
methods. First, from the time courses, it is possible to see
that with SFICA, the envelopes of the correctly estimated
sources were much larger than those of the false sources;
the same effect was observed to a lesser extent with spatial
ICA. Second, the time courses of the SFICs are slightly
lagged with respect to the true sources whereas the time-
courses of the spatial ICs are not. This phenomenon is pre-
sumably related to the phase differences in the different
sampling windows due to their arbitrary alignment with
respect to the phase of the oscillatory signal. Third, for

Figure 4.

Comparison of SICA and SFICA in the analysis of real MEG

data. A representative occipital �10-Hz component for a single

subject from each algorithm applied to a natstim sequence is

shown. The spatial power maps, thresholded to show the sur-

face points with top 5% strength, are overlaid on the inflated

brain surfaces of that subject (from left to right: left hemisphere

lateral, left hemisphere medial, right hemisphere medial, and

right hemisphere lateral views). The time courses of the compo-

nent are overlaid on the stimulus sequence, and the correspond-

ing normalized power spectra are shown. The green bands

represent visual stimuli, the red bands represent auditory stim-

uli, and the gray bands represent tactile stimuli.
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SFICA alone, some of the false sources have spatial pat-
terns very similar—as estimated by the spatial correlation
coefficient (spatial r > 0.9)—to one of the correctly esti-
mated sources. As shown in Figure 2 (bottom right), the
power spectra of these ‘‘shadow sources’’ exhibit peaks
which are split around the peak of the true simulated
source. Fortunately, such shadow sources have much
smaller energies (i.e., norms of the columns of the mixing
matrix), which enables us to reject them as artifactual
sources. Spatial patterns of the true simulated and the esti-
mated sources are not shown.

Figure 3 depicts the cumulative percentage of explained
variance in reduced space by the components, arranged in
descending order of percentage variance explained. The
top 3 of the 10 ICs from SICA (which happen to be the
correctly estimated sources) explained �96% of the var-
iance, whereas the top 3 SFICA ICs explained 99% of the
variance.

Results from real MEG data

Since we do not know the ground truth for real MEG
data, it is difficult to quantitatively compare the results
from the two different algorithms. Both SICA and SFICA
were able to detect the �10 Hz parieto-occipital alpha
rhythm. Figure 4 shows a representative 10-Hz occipital
component for both methods (SICA above, SFICA below).
The spatial power map, the normalized Fourier power,
and the envelope time course overlaid on the stimulus
sequence, are shown for both components. SICA was
unable to detect the �10/�20 Hz rolandic mu rhythm
components, while SFICA detected them. Further, SFICA
detected components with a 1/f spectrum consistently,
while they were not visible in the SICA results.

Concatenated spatial Fourier-ICA

SFICA was able to identify the parieto-occipital alpha and
the rolandic mu rhythms quite consistently in all subjects
(based on visual inspection; see Figs. 6 and 7 below). In
addition, the temporal-lobe �8-10 Hz rhythm was also
detected in some subjects (see Fig. 8). Among the 25 compo-
nents extracted from each individual subject’s data, 2 � 2
(median � SD across 9 subjects) components were modu-
lated by sounds, 9 � 7 by videos, 3 � 2 by tactile stimuli,
and 11 � 6 were stimulus-unrelated. Table I shows the cor-
responding numbers of components for each subject.

The component power spectra were narrowband in gen-
eral, with the exception of those with a 1/f shape. Overall,
7 � 2 components had no spectral peaks above 5 Hz (pre-
sumably 1/f components), 2 � 1 components had peaks in
the 5–8 Hz range, 13 � 4 in the 8–15 Hz range, 3 � 3 in
the 15–30 Hz range, and none above 30 Hz. Table II gives
the corresponding numbers for each subject.

Figures 5 and 6 show representative components, cap-
turing the �10-Hz occipital alpha and the �20-Hz rolandic
mu rhythm, respectively. The spectra in the range 5–30
Hz, the z-score of the time courses averaged across the
two runs (mean � SEM), and the bar graph representing
the modulation score (mean � SEM) are also shown. The
alpha rhythm is clearly suppressed during visual stimula-
tion. The mu rhythm appears to be suppressed to tactile
stimuli, but in addition, enhanced during visual
stimulation.

Figure 7 shows two representative components from a
single subject: a 1/f power spectrum component (top), and
an auditory temporal-lobe rhythm component (bottom).
Only time courses for the natstim sequence are shown.
The spatial maps of the 1/f components do not conform to
any consistent spatial pattern; some of the maps highlight
early sensory cortices (such as in this component), but
some others also cluster in the premotor cortices or pre-
frontal cortices. The temporal-lobe component has a clear
spectral peak at �8-10 Hz, but the time course does not
show any consistent modulation to auditory stimulation.

TABLE I. Number of SFICs whose time courses were

strongly modulated by the stimuli (auditory, visual,

or tactile) or were not significantly modulated

(stimulus-unrelated)

Auditory Visual Tactile
Stimulus-
unrelated

Subject01 2 4 2 17
Subject02 1 20 0 4
Subject03 0 15 1 9
Subject04 0 12 5 8
Subject05 3 4 4 14
Subject06 4 16 2 3
Subject07 0 2 4 19
Subject08 2 4 3 16
Subject09 1 10 0 14
Median � SD 1 � 1 10 � 6 2 � 2 14 � 6

Numbers are given for each subject; the last row gives the median
� SD across all nine subjects. The stimulus-related modulation was
judged by a two-sided t-test with unequal variances comparing the
block-wise logarithm of the median signal with the corresponding
logarithm of the median signal of its preceding rest block.

TABLE II. The number of SFICs across different

frequency bands (as determined by peak power of the

component power spectrum) for each subject

�1/f 5–8 Hz 8–15 Hz 15–30 Hz > 30 Hz

Subject01 6 2 12 5 0
Subject02 6 3 14 2 0
Subject03 7 1 17 0 0
Subject04 5 0 16 4 0
Subject05 6 3 5 11 0
Subject06 6 4 14 1 0
Subject07 13 1 9 2 0
Subject08 8 4 12 1 0
Subject09 5 0 20 0 0
Mean � SD 7 � 2 2 � 2 13 � 4 3 � 3 0
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Figure 8 shows the mean � SEM time courses of repre-
sentative alpha and mu components for the natstim and
nat&rest conditions, for a selected duration of time (�5
minutes), averaged across eight subjects.

DISCUSSION

Spatial ICA Vs. Spatial Fourier-ICA

We showed that both SICA and SFICA were able to
identify the true underlying sources from simulated MEG
data. However, SFICA was able to separate the true and

false sources more effectively, as measured by the percent-
age of data variance captured by the estimated true sour-
ces. When compared with SFICA, SICA generally allows a
higher temporal resolution for the estimated sources (as
high as the time resolution of the raw data) and it is more
parsimonious (in terms of number of parameters estimated
per observation) owing to its real-valued mixing model.
However, SFICA explicitly utilizes frequency information
during source separation and is thus biased to detect oscil-
latory sources. This difference is probably the main reason
for SFICA’s superior performance when compared with
SICA. Furthermore, given the vastly smaller number of

Figure 5.

A recovered source from real MEG data of a single subject using

concatenated SFICA (out of 25 recovered sources). This com-

ponent was found across subjects and is representative of the

�10-Hz parieto-occipital alpha rhythm. The spatial power maps,

thresholded to show the surface points with top 5% strength,

are overlaid on the inflated brain surfaces of that subject (from

left to right: left hemisphere lateral, left hemisphere medial, right

hemisphere medial, and right hemisphere lateral views). The

time courses show the z-scores of the envelopes overlaid for

the two runs each of natstim, restfix, and nat&rest. The dark

line represents the mean across the two runs, and the lighter

lines represent mean � SEM. The background represents the

stimulus sequence: green bands represent visual stimuli, red

bands represent auditory stimuli, and gray bands represent tac-

tile stimuli. The natstim and nat&rest conditions show a clear

suppression to all three categories of visual stimuli (faces, hands

and places). The component has relatively high scores of spatial

sparseness, spectral sparseness and percent variance explained.
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variables (by a factor of almost 25), the cost of computing
the principal components is also much lower for SFICA
than for SICA. Given this computational advantage, the
theoretical disposition of SFICA towards sparse oscillatory
sources, as well as the results of the comparison on simu-
lated data (Section Simulation results), SFICA seemed to
be a more robust and physiologically valid method than
SICA, for characterization of oscillatory dynamics over
time scales of minutes.

SFICA Results From Real MEG Data

The method was consistently able to identify stimulus-
related oscillatory MEG components in several subjects; a
majority of these likely represented classical alpha and mu
rhythms [Hari and Salmelin, 1997]. In some but not all
subjects, the method identified temporal-lobe �8-10 Hz
rhythms that according to their site of origin would repre-
sent the rarely reported auditory-cortex tau rhythm

Figure 6.

A recovered source from real MEG data of a single subject using

SFICA (out of 25 recovered sources). This component was

found across subjects and is representative of the �20-Hz rolan-

dic mu rhythm. The spatial power maps, thresholded to show

the surface points with top 5% strength, are overlaid on the

inflated brain surfaces of that subject (from left to right: left

hemisphere lateral, left hemisphere medial, right hemisphere

medial, and right hemisphere lateral views). The time courses

show the z-scores of the envelopes overlaid for the two runs

each of natstim, restfix, and nat&rest. The dark line represents

the mean across the two runs, and the lighter lines represent

mean � SEM. The background represents the stimulus

sequence: green bands represent visual stimuli, red bands repre-

sent auditory stimuli, and gray bands represent tactile stimuli.

The natstim and nat&rest conditions show a clear suppression

to tactile stimuli. The component has relatively high scores of

spatial sparseness, spectral sparseness and percent variance

explained.
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[Lehtelä et al., 1997; Tiihonen et al., 1991]. However, we
did not detect statistically significant reactivity of these
components to sounds, and their morphology varied
widely across subjects.

In more than half of the subjects, the majority of the
components were not modulated by any of the stimulus
categories. It is difficult to say which of these components
were artifactual and which of them were of real neural ori-

gin. Many of the stimulus-unrelated components dis-
played a 1/f spectrum and could have arisen from
artifacts outside the head; however we did not observe
any 1/f components in the simulated dataset that included
noise from a real measurement done in the absence of a
subject.

Recently, de Pasquale et al. [2010] used stationary and
nonstationary seed-based correlation metrics to

Figure 7.

Above: A recovered source from real MEG data of a single subject

using SFICA (out of 25 recovered sources). This component is rep-

resentative of sources with a 1/f power spectrum. It has spatial max-

ima in the right Sylvian fissure and deep in the right mesial parieto-

occipital sulcus. The time courses show the z-scores of the enve-

lopes overlaid for the two runs each of natstim. Below: A recovered

source from real MEG data of a single subject using SFICA (out of

25 recovered sources). This component is representative of sources

with a �8-Hz temporal-lobe rhythm. It has spatial maxima in the

right auditory cortex and the right superior temporal sulcus. The

time courses show the z-scores of the envelopes overlaid for the

two runs each of natstim. For both components, the spatial power

maps, thresholded to show the surface points with top 5% strength,

are overlaid on the inflated brain surfaces of that subject (from left

to right: left hemisphere lateral, left hemisphere medial, right hemi-

sphere medial, and right hemisphere lateral views). The dark line

represents the mean across the two runs, and the lighter lines rep-

resent mean � SEM. The background represents the stimulus

sequence: green bands represent visual stimuli, red bands represent

auditory stimuli, and gray bands represent tactile stimuli.
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characterize resting-state networks in MEG data. In the
stationary case, most networks were unilateral whereas
bilateral networks were also found in the nonstationary
case. Similarly, most of our components were lateralized
to one hemisphere, with the exception of some occipital
10-Hz components and some components with spatial
maxima in the medial surfaces. This dominance of unilat-
eral networks seems to contrast with many fMRI results
where a single component often reveals bilateral networks,
such as the sensorimotor or default-mode networks. A
possible explanation is that the high temporal resolution
of MEG allows us to observe the fine differences in the dy-
namics of regions [functionally] coupled across the hemi-
spheres whereas the sluggishness of the BOLD response
may render these differences invisible to fMRI.

When compared with the spectral profile of components
obtained using temporal Fourier-ICA [Hyvärinen et al.,
2010], the SFICA components seem to be more narrow-
band (i.e., spectrally sparse). This improved spectral reso-
lution could be attributed to the selection of the top 5%
active voxels for visualization.

Finally, it must be noted that the naturalistic stimuli
employed in acquiring this dataset comprised unimodal
stimulus blocks with rest-blocks in-between, which may
have enhanced the separability of stimulus-related modu-
lations of rhythmic activity in our analysis.

Open Questions

Some questions regarding the ingredients of the algo-
rithm and its applicability remain. Firstly, the ICA signal
model (noisy vs. noiseless mixing) has implications on the
correct thresholding method of the component spatial
maps before visualization. Beckmann and Smith (2004)
used a noisy mixture for their signal model and derived a
Gaussian-Gamma mixture model to represent the distribu-
tion of the spatial IC. The Gaussian distribution captures
the noise while the Gamma distribution captures the sig-
nal. This has been standardized in their MELODIC soft-
ware package. Calhoun et al. (2001) used the more
standard noiseless ICA signal model and applied a z-

Figure 8.

Above: Envelopes of �10-Hz occipital components averaged

across eight subjects; the components (one per subject) were

selected manually by visual inspection for each subject. Clear sup-

pression is observed during visual stimulation. Below: Envelopes of

selected �20-Hz rolandic components averaged across 8 subjects.

Clear suppression is observed during tactile stimulation. The dark

line represents the mean across the two runs, and the lighter lines

represent mean � SEM. The background represents the stimulus

sequence: green bands represent visual stimuli, red bands repre-

sent auditory stimuli, and gray bands represent tactile stimuli.
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score-based thresholding to visualize the spatial IC. In the
case of MEG data, neither method was readily applicable.
First, the inverse problem has its own assumptions about
the statistical distribution of source currents (i.e., the priors
implicit in the minimum-norm source covariance by
default), calling into question the validity of the Gaussian-
Gamma mixture model. Secondly, the distributions of the
spatial ICs are far from Gaussian, making a z-score-based
threshold invalid. Hence, for this analysis, we applied a
percentile-based threshold. More work is required to cor-
rectly characterize the statistical distribution of the compo-
nent spatial maps and to enable more principled
thresholding.

Second, the commonly applied normalization before
whitening (voxelwise temporal variance normalization,
voxelwise intensity normalization, global mean removal
etc.) has important but (as yet) unclear implications on
ICA. Since the dSPM inversion [Dale et al., 2000] already
does a voxelwise normalization by noise variance, we did
not employ any further normalization except for a global
scaling of each recording by the mean current estimate.

Third, it is not completely clear whether we should do
spatial ICA in the sensor space or the cortical space. Three
considerations point towards an advantage of performing
ICA in the cortical space. First, maximization of spatial
sparseness is physiologically more meaningful in the corti-
cal space; it is less meaningful in the sensor space because
many sensors see signals from the same sources. Second,
the anatomically informed cortical projection greatly
increases the number of observations in the ICA model
and thus improves its estimation accuracy. Third, it is
more straightforward to combine the information from the
magnetometer and gradiometer time-series in cortical
space. By contrast, in our earlier work on temporal ICA in
sensor space [Hyvärinen et al., 2010], we discarded the
magnetometer channels. Hence, for this article, we chose
to analyze the data in the cortical space. Fourth, given the
sequence of the processing stages, a comment on the inter-
relatedness of the dimensionality reduction offered by SSS,
MNE, and PCA is clearly warranted. SSS reduces the num-
ber of degrees of freedom in the data in a data-independ-
ent way to the number of spherical harmonic functions
required to model the magnetic fields generated from
within the skull. The dimensionality reduction offered by
MNE is not as explicit, and depends on the regularization
coefficient in the inverse projection. The last PCA step is
not entirely redundant either because it uses spectral infor-
mation in addition to MNE and SSS, which use only spa-
tial information. Further, the last PCA is very useful for
ICA because it explicitly reduces the number of data varia-
bles, completely removing dimensions of very small
variance.

Finally, there is no consensus for inference from inde-
pendent components at the group level. Various methods
have been studied in the fMRI literature. The most widely
applied are the temporally concatenated GIFT [Calhoun
et al., 2001] and tensor PICA [Beckmann et al., 2005].

Broadly speaking, these methods estimate the independent
components from group-level data, followed by recon-
struction of the individual-level components (GIFT, tensor
PICA). On the other hand, there is a school of thought
which recommends estimation of individual-level compo-
nents followed by post-hoc matching [Esposito et al., 2005;
Langers, 2010]. In the case of MEG data, the poorer spatial
resolution and the errors in the individual co-registrations
between MEG sensors and anatomical MR images could
result in non-negligible errors when concatenating data
across subjects. For this reason alone, it may be more rea-
sonable to employ a post-hoc matching method.

To conclude, the main value of spatial Fourier-ICA is to
enable inference about oscillatory activity under different
conditions, such as resting state and natural stimulation,
and across different subject groups, such as patients and
healthy volunteers. By interrogating the component time
courses (Fourier power) one can study e.g., functional con-
nectivity between different components of the same sub-
ject, modulation of oscillatory activity by natural stimuli,
and repeatability of activity time courses spanning several
minutes, within and across subjects. In future work, we
intend to pursue some of the open questions outlined
earlier.
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